

ESCUELA NACIONAL DE ESTUDIOS SUPERIORES UNIDAD MORELIA

MÉTODOS NUMÉRICOS DE LA HIDRODINÁMICA RELATIVISTA APLICADOS A PROBLEMAS DE ACRECIÓN Y EYECCIÓN EN JETS ASTROFÍSICOS

T E S I S

QUE PARA OBTENER EL TÍTULO DE:

LICENCIADO EN GEOCIENCIAS

PRESENTA:

IRVING YOSAFAT ANGEL CAMACHO

TUTORES:

Dr. Sergio Mendoza Ramos Dr. Sinhué A. R. Haro Corzo

Morelia, Michoacán, 2019

 $Dedicatoria\ ...$

Agradecimientos

Notación

Introducción

Índice general

\mathbf{A}	Agradecimientos			
N	Notación			
In	troducción	IV		
1	Hidrodinámica relativista	1		
	§1.1 Introducción	1		
	§1.2 Tensor energía-momento	1		
	§1.3 Ecuaciones de la hidrodinámica relativista	1		
	§1.4 Ecuación de la conservación de la entropía	1		
	§1.5 Ondas de choque relativistas	1		
2	Métodos numéricos			
3	Código aztekas	3		
	§3.1 Antecedentes	3		
	§3.2 Método x	3		
	83 2 1 Análisis preliminar	3		

		§3.2.2 Discretización aztekas	3
	§3.3	Estructura del código	3
		§3.3.1 Archivos base	3
		§3.3.2 Achivos creados	3
	§3.4	Funciones importantes	3
	D		4
4	Pru	ebas numéricas	4
	§4.1	Tubo de choque	4
	§4.2	Casos particulares	4
		§4.2.1 Colisión de dos ondas de choque	4
		§4.2.2 Choques internos en jets relativistas	4
_	C		J
5	Con	aclusiones	5

Índice de figuras

Hidrodinámica relativista

- 1.1. Introducción
- 1.2. Tensor energía-momento
- 1.3. Ecuaciones de la hidrodinámica relativista
- 1.4. Ecuación de la conservación de la entropía
- 1.5. Ondas de choque relativistas

Métodos numéricos

Código aztekas

- 3.1. Antecedentes
- 3.2. Método x
- 3.2.1. Análisis preliminar
- 3.2.2. Discretización aztekas
- 3.3. Estructura del código
- 3.3.1. Archivos base
- 3.3.2. Achivos creados
- 3.4. Funciones importantes

Pruebas numéricas

- 4.1. Tubo de choque
- 4.2. Casos particulares
- 4.2.1. Colisión de dos ondas de choque
- 4.2.2. Choques internos en jets relativistas

Conclusiones