Chassi

Carl Jonsson

September 24, 2014

Abstract

Contents

1	Introduction	6
2	Method	7
3	results	8
4	Discussion	9
5	Conclusions	10
Re	eferences	11

The data is presented in Table 1 and Figure 1 is showing the a man on a motorcycle. The plattform should be in steel [1] which also is confirmed during an interview with A.Andersson 1 .

Speed	Power demand	Power demand	Fraction rolling	Fraction aero-
	at wheel	at clutch	resistance	dynamic drag
60 km/h	7894.55	8771.72	0.635	0.265
80 km/h	12934.13	14371.26	0.517	0.383
120 km/h	29721.50	33023.89	0.337	0.563
262 km/h	217674.73	241860.81	0.101	0.799

Table	1:	Power	demand

Figure 1: Steve McQueen on a motorcycle

Exapmles of equations:

$$m_{unloaded} = 2200 \ [kg]$$

 $m_{load} = 230 \ [kg]$ (3 occupants and luggage)
 $C_D = 0.360$
 $C_r = 0.013$
 $A_v = 2.37 \ [m^2]$
 $\rho_{air} = 1.18 \ [kg/m^3]$
 $\rho_{fuel} = 750 \ [kg/m^3]$
 $\eta_{transmission} = 90\%$
 $Q_{LHV} = 44.0 \ [MJ/kg]$
 $\lambda = 1$

 $^{^1\}mathrm{Professor}$ Anders Andersson, 5th of may 2014

$$P_b[kW] = \frac{bmep[kPa]V_d[dm^3]N[rps]}{2 \cdot 10^3}$$
(0.1)

1 Introduction

2 Method

3 results

4 Discussion

5 Conclusions

References

[1] "Concave pin 2012 — slipstream longboards," April 2014, http:// slipstreamlongboards.com/quiver2012/concave-pin-2012/.