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Abstract Development of genetics in recent years has led to a situation in which
we are able to look at the DNA chains with high precision and collect vast amounts
of information. In addition, it turned out that the relationships between genes and
traits are more complex than previously thought. Because of not the best commu-
nication between mathematicians and geneticists, knowledge of methods other than
the classic among the latter group is still small.
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1. DNA as the carrier of genetic information.
Probably nobody has to be convinced about the huge diversity of living

organisms on our planet. However, each form of life has a common structure
made up of nucleotides (i.e. deoxyribose, a phosphate group and a nitrogenous
base) called DNA. When we look closely at this molecule, we see that its exact
composition depends on the species with which we are dealing; what is more,
it is a kind of guide of how an organism is to be built. For this reason, we
may be tempted to treat it as a measure of similarity between species. It is
believed that the DNA of chimpanzee in 98% does not differ from the human.
And can we find some similarities between man and something as different as
yeast? It turns out that we share with them a quarter of genes.

1.1. Genes What are genes? There is no simple answer to this question,
at least at the present level of development of science. This is due to the
fact that when this term was created, not much was known about DNA. A
gene was understood as a theoretical unit of inheritance, that is something
that significantly affects the phenotype (set of features) of an individual and
is passed down from generation to generation. Only later we tried to find a
material object, which would correspond to the abstract entity. In textbooks
we will find the answer to those searches: a gene is a piece of DNA, determining
formation of one molecule of protein or RNA. In recent years, however, our
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Figure 1: Gen i SNP

confidence in understanding what we are dealing with has decreased. The
gene seems to be something more complex, and therefore its definitions as
well. We will hear voices that maybe it is even worth to give up this idea [9].

In this paper we will understand a gene as a segment of DNA which has
a meaning (affecting a trait more or less indirectly), and which is present in
at least two versions, so-called alleles. Depending on whether we have a gene
in version A or a, it may result, for example, in a higher or lower risk of
developing a disease.

1.2. Inter-individual differences in DNA From this point we will be
interested in inter-individual differences in the DNA. We focus on one genre
and look for places that make two carrots or two people differ from each
other. Such differences are smaller; DNA of two random people will most
likely be the same in 99.9%. This per mille is however enough to find many
differences between us (it is worth noting that also environment has impact
on our features and it is actually not known what the proportions are).

At this point we have to make some distinction between finding genes
in humans and other species. To do this, let us have a closer look at DNA
structure. What we are most interested in are the nitrogenous bases. Usu-
ally they come in four versions: adenine, cytosine, guanine and thymine. Two
DNA chains are different due to the fact that in the same location there are
various nitrogen bases. In animals and plants we are generally looking for
longer segments of DNA, which can occur in different versions, while in hu-
mans we most often consider each of nucleotides of an individual, and those
in at least one percent of persons are different than the rest, so-called sin-
gle nucleotide polymorphisms (Single Nucleotide Polymorphism, SNP). The
Figure 1 presents schematically how a gene and SNP usually look.

1.3. Why look for genes? At the end of this paragraph we will answer
the question, how the information about which places in the DNA are respon-
sible for what could be useful. In humans, we can better understand the cause
of the disease and thus develop a more effective medicament. We are also able
to much more quickly assess risk and start the treatment earlier. In animals,
such as cows, if we discover which genes are responsible for milk production,
for example, we can interbreed only the appropriate individuals. Information
about the location of a gene is also useful in the cultivation of fruit. If we
want to grow in our orchard only sweet fruit, instead of for decades to cross
different varieties, looking for the optimal characteristics, we can immediately
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use these with appropriate parameters [5].

2. General model. We would now like to go into mathematics and
translate information about genotypes of an individual. We have identified
alleles by A and a, which may seem unreasonable, because what symbol you
could choose for the third allele? It turns out that this situation, i.e., the
occurrence of a third or subsequent versions, is so unlikely that in general
most often this opportunity is not included. This is due to the fact that a
mutation in a DNA is rare, so next one in the same place hardly occurs.
We could, therefore, encode the genetic information by only two numbers,
except for the fact that DNA is in chromosomes which occur in pairs. In the
corresponding chromosomes we do not have the same strings as one strand is
inherited from a mother and the other from a father. Thus, in a given place
within the DNA we have three choices: AA, aA (or AA, but the order is not
important), or AA.

In summary, for each individual we can indicate a sequence of genotypes
(e.g. encoded as -1, 0 and 1) and the value of the trait of interest. Individual
genotypes will be qualitative explanatory variables and the trait will be a
dependent variable.

3. Tests in single markers Our task is to identify which of the genes
significantly influence the trait under consideration. And it is worth noting
that, indeed, we will focus on locating them and the kind of dependence not
necessarily concerns us. At the beginning let us try to approach this problem
in the simplest possible way.

If we examine a quantitative trait, we can – by a suitable test – verify null
hypothesis that the average value of a trait does not depend on the genotype
of the marker. When its distribution does not differ significantly from normal,
we often use the classical Student’s t-test (if we consider only two versions of
genotype) or F test for analysis of variance. If the distribution of a trait is not
normal, we can apply the appropriate transformation, or instead of values of
a trait consider ranks.

3.1. Linear regression It is common practice in testing the significance
of a given marker to use a linear regression model. We are trying to fit a model

Yi = β0 + βjXij + εi , i = 1, . . . , n,

where εi is a random variable with the normal distribution, mean 0 and
variance σ2, while Xij is the genotype of j-th marker. When it has only two
values, for example aa i AA, commonly the following encoding is used:

Xij =

{
−1/2, aa
1/2, AA

The problem occurs when we consider three versions of genotypes, since then
the relationships between numbers are important. Therefore, it is best to
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introduce an additional variable that will solve this problem. The following
encoding is used most often:

Xij =


1, aa
0, aA
−1, AA

and

Zij =

{
−1/2, aa or AA
1/2, aA

More on encoding can be read at work [9]. The considered model is now in
the form of

Yi = β0 + βjXij + γjZij + εi .

Using regression models, the null hypothesis presented earlier is now βj =
0, or βj = γj = 0. In order to verify this hypothesis we can apply in both cases
the F-Snedecor test, in which we examine the ratio of the squares of residuals
to the sum of squares explained by the model or the likelihood ratio test. When
in the model we only have the Xij , we can also use the Student’s t-test, in
which the value of the estimator β̂j is divided by its standard deviation. We
will not go into detail about these tests, because they are classic approach
to study the significance of the regression coefficients. It can be also show
that for the models considered by us, F-Snedecor test is equivalent to test
F for analysis of variance (and the Student’s t-test for the model with two
genotypes is equivalent to F-Snedecor test).

3.2. The problem with multiple testing When we use tests in indi-
vidual markers, regardless of whether they are classic tests or linear regression
approach, we face the problem of multiple testing: if we carry out a single test
at the significance level α, then we have no guarantee that we will maintain
this level performing more tests. For example, if we have a thousand mark-
ers, then performing tests at the level of 0.05 (and assuming that the marker
genotypes are independent), we can expect about 50 false discoveries. This
is not acceptable and therefore we apply corrections for multiple testing to
control the probability of making at least one error of the first kind (Fam-
ily Wise Error Rate, FWER). The simplest is the Bonferroni correction, in
which each test is performed at the level of α/m, where m is the number of
markers. Then we have the guarantee that FWER will not exceed α. This ad-
justment, however, becomes problematic, when the genotypes of the markers
are strongly correlated, which in experimental populations is typical. Then
the level of α/m is too low and it may happen that an essential gene escapes
our attention. One solution is to use permutation tests [9], which adjust the
critical value for the test to the correlation structure between the markers (in
fact, between the values of the statistics). The procedure goes in such a way
that we permute the vector Y several times, for each permutation we count
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values of test statistics and we find their maximum. As the critical value we
take the 1− α quantile of the distribution of the resulting maxima.

Then, we reject kF hypotheses with the p-values less than or equal to
p[kF ]. The procedure may seem strange, but it was shown that it controls
at a level not exceeding α the so-called fraction of false discoveries (False
Discovery Rate, FDR), i.e.

FDR = E

(
V

R
|R > 0

)
,

where R is the number of all rejected hypotheses, and V is the number of
false rejections.

4. Multiple regression. The main problem of testing in single markers
is the fact that we completely ignore the impact of other markers. If more
genes have connection with a trait (it is usually true), it is a better idea to
attempt to fit a model that contains all these essential genes. In addition,
genes may interact with each other. All of this can be modeled using the
multiple regression. If we consider only interactions of second order, then a
model for the case of two versions of genotypes is of the form of

Yi = β0 +

m∑
j=1

βjXij +
∑

1≤j<l≤m

γjlXijXil + εi.

In practice, becausem is large, we limit ourselves just to interactions of second
order, and sometimes give them up at all.

4.1. Model selection criteria If we already decide to apply the multiple
regression, we need to establish criterion which particular model we want to
consider as the best. It is known that adding more variables will certainly not
make worse the fitting to the date, so we need to decide on a compromise
between the fitting and the number of variables. For this purpose, we can use
the model selection criteria, which take into account a penalty for the size.
It turns out, however, that the classic criteria as AIC [9] or BIC [9] are not
suitable for this purpose because they overestimate the number of significant
variables [9].

4.2. Modifications of BIC One idea is to replace the uniform distri-
bution on models with different distribution, so that we will get a criterion
with desired properties. This led to establishing the criteria mBIC [1] and
EBIC [13]. In the first one, by using a suitable a priori distribution, we still
obtain binomial distribution on a model size, but the probability of success
equal to Em/m where Em is the expected value of the significant variables.
The criterion minimizes the expression

mBIC = n ln(RSS) + p lnn+ 2p ln

(
m

Em
− 1

)
,
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where RSS is the residual sum of squares, p is the size of the relevant model.
The difference with the standard BIC is the addition of the last element. In
the event that we do not have any expectations to the number of relevant
variables, it was shown that for typical sample sizes the choice of Em = 4
results in the fact that the total type I error is at a level close to 0.05 [1]. It
was also shown that the criterion is consistent in a situation where both n
and m tend to infinity [7].

If controlling FWER is not so important for us, then similarly to single
marker tests we can focus on the control of FDR. An appropriate criterion in
this case is mBIC2 [6], defined as

mBIC2 = n lnRSS + p lnn+ 2p ln

(
m

Em
− 1

)
− 2 ln p!.

Of course, after appropriate modifications, this criterion can be also used in
a situation when we take into account interactions and genotypes in three
possible versions.

These criteria can also be used if the trait distribution is not continuous,
e.g. in the logistic or Poisson regression. One should then replace the term
n lnRSS with minus doubled logarithm of the maximum likelihood function
for a given model [12].

Readers interested in expanding their knowledge about statistical ap-
proach to the location of genes are referred to the book [4].

5. Summary. Classic and new approaches to the problem of localizing
genes have been presented. When using conventional methods we encounter a
number of problems which we are able to cope with only partially. Simulations
and analysis of real data show that the new methods behave better: they
enable to find genes that would escape our attention during classic proceedings
[8, 12, 13] and allow to design models closer to reality, for example by taking
into account interactions [3]. These methods are still being developed and
adjusted to the genetic data, which character is even more specific [2].
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Streszczenie Rozwój genetyki w ostatnich latach doprowadził do sytuacji, w której
jesteśmy w stanie przyjrzeć się łańcuchom DNA z dużą precyzją i zebrać ogromne
ilości informacji. Oprócz tego okazało się, że zależności między genami a cechami są
bardziej skomplikowane niż się wcześniej wydawało. Te dwie rzeczy spowodowały, że
niezbędna stała się ścisła współpraca między genetykami a matematykami, których
zadaniem jest opracowanie specjalnych metod, radzących sobie w specyficznych i
trudnych problemach genetycznych. Artykuł zawiera przegląd zarówno klasycznych
jak i najnowszych podejść do problemu lokalizacji genów, czyli wskazywania miejsc
w łańcuchu DNA, które istotnie wpływają na interesujące nas cechy. Z powodu nie
najlepszej komunikacji między matematykami i genetykami, znajomość metody in-
nych niż klasyczne wśród tej drugiej grupy jest wciąż niewielka.

Klasyfikacja tematyczna AMS (2010): 62J05; 92D20.

Słowa kluczowe: genetyka statystyczna, wybór modelu, rzadka regresja liniowa, bay-
esowskie kryterium informacyjne, ilościowa analiza lokalizacji genów.
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