Class Title Goes Here

Homework Number

Your Name Goes Here

Date Goes Here

1. Problem 1

1-(c) A matrix W is in the subgradient if it satisfies:

$$
\operatorname{trace}\left\{(\boldsymbol{Y}-\boldsymbol{X})^{\top} \boldsymbol{M}\right\} \leq\|\boldsymbol{Y}\|_{2,1}-\|\boldsymbol{X}\|_{2,1} .
$$

This can be rewritten as:

$$
\begin{equation*}
\sum_{j=1}^{n}\left(\boldsymbol{Y}_{,, j}-\boldsymbol{X}_{., j}\right)^{\top} \boldsymbol{M}_{,, j} \leq \sum_{j=1}^{n}\left\|\boldsymbol{Y}_{., j}\right\|_{2}-\sum_{i=1}^{n}\left\|\boldsymbol{X}_{., j}\right\|_{2} . \tag{1.1}
\end{equation*}
$$

The previous equation tells us that if $M_{\text {., }}$ for $j=1, \ldots, n$ are in the subgradients of $\left\|\boldsymbol{X}_{., j}\right\|_{2}$ for $j=1, \ldots, n$ respectively then \boldsymbol{M} is in the subgradient of $\|\boldsymbol{X}\|_{2,1}$. However, this is only a sufficient condition. To prove it is also necessary, observe that if \boldsymbol{M} is in the subgradient of $\|\boldsymbol{X}\|_{2,1}$ then it satisfies eqn. (1.1). Next, since the equation is supposed to hold for all \boldsymbol{Y}, we can take $\boldsymbol{Y}_{., j}=\mathbf{0}$ everywhere except for $j=k$. Then, eqn. (1.1) becomes:

$$
\left(\boldsymbol{Y}_{\cdot, k}-\boldsymbol{X}_{\cdot, k}\right)^{\top} \boldsymbol{M}_{\cdot, k} \leq\left\|\boldsymbol{Y}_{., k}\right\|_{2}-\left\|\boldsymbol{X}_{., k}\right\|_{2}
$$

so that $\boldsymbol{M}_{., k}$ is in the subgradient of $\left\|\boldsymbol{X}_{., k}\right\|_{2}$. Since this must hold for $k=1, \ldots, n$, using problem 1(b) we conclude:

$$
\left(\partial\|\boldsymbol{X}\|_{2,1}\right)_{,, j}=\left\{\begin{array}{ll}
\frac{\boldsymbol{X}_{\cdot, j}}{\left\|\boldsymbol{X}_{\sim, j}\right\|_{2}} & \text { if } \boldsymbol{X}_{., j} \neq \mathbf{0} \\
\left\{\boldsymbol{M}_{\cdot, j}:\left\|\boldsymbol{M}_{\cdot, j}\right\|_{2} \leq 1\right\} & \text { if } \boldsymbol{X}_{\cdot, j}=\mathbf{0}
\end{array},\right.
$$

Equivalently:

$$
\left(\partial\|\boldsymbol{X}\|_{2,1}\right)_{i, j}=\left\{\begin{array}{ll}
\frac{\boldsymbol{X}_{i, j}}{\left\|\boldsymbol{X}_{,, j}\right\|_{2}} & \text { if } \boldsymbol{X}_{\cdot, j} \neq \mathbf{0} \\
\left\{\boldsymbol{M}_{i, j}:\left\|\boldsymbol{M}_{\cdot, j}\right\|_{2} \leq 1\right\} & \text { if } \boldsymbol{X}_{\cdot, j}=\mathbf{0}
\end{array} .\right.
$$

as desired. Note: the homework uses W instead of M.

1-(d) If we wish to minimize the objective function we first observe that the function is convex. In fact, it is strictly convex because the term $\|\boldsymbol{X}-\boldsymbol{A}\|_{F}^{2}$ is strictly convex in \boldsymbol{A} and, as we have shown in 1(b), $\|\boldsymbol{A}\|_{2,1}$ is convex in \boldsymbol{A}. Furthermore, the sum of a strictly convex function and a convex function is again a strictly convex function. Therefore, our objective function has a unique solution. Next, observe that the subgradient of our objective function is:

$$
-(\boldsymbol{X}-\boldsymbol{A})+\tau \partial\|\boldsymbol{A}\|_{2,1} .
$$

By part 1(c) we can further write the subgradient as:

$$
-(\boldsymbol{X}-\boldsymbol{A})+\tau \boldsymbol{M}
$$

where:

$$
\boldsymbol{M}_{\cdot, j}=\left\{\begin{array}{ll}
\frac{\boldsymbol{A}_{i, j}}{\left\|\boldsymbol{A}_{, j, j}\right\|_{2}} & \text { if } \boldsymbol{A}_{\cdot, j} \neq \mathbf{0} \tag{1.2}\\
\left\{\boldsymbol{M}_{i, j}:\left\|\boldsymbol{M}_{\cdot, j}\right\|_{2} \leq 1\right\} & \text { if } \boldsymbol{A}_{\cdot, j}=\mathbf{0}
\end{array} .\right.
$$

Recall that a matrix \boldsymbol{A}^{*} is a minimizer of our objective function if the subgradient of the objective function at \boldsymbol{A}^{*} contains the matrix 0 . This can be written as:

$$
\begin{equation*}
\tau M=\left(X-\boldsymbol{A}^{*}\right) \tag{1.3}
\end{equation*}
$$

for some matrix M defined by eqn. (1.2). Now, since we have already shown the objective function has a unique minimizer, all we must do is plug in the suggested solution for \boldsymbol{A}^{*} and see if it satisfies eqn. (1.3). Plugging in:

$$
\begin{aligned}
\left(\boldsymbol{X}-\boldsymbol{A}^{*}\right)_{., j} & =\left[\boldsymbol{X}-\boldsymbol{X} \mathcal{S}_{\tau}(\operatorname{diag}(\boldsymbol{x})) \operatorname{diag}(\boldsymbol{x})^{-1}\right]_{., j} \\
& = \begin{cases}\tau \frac{\boldsymbol{X}_{., j}}{\left\|\boldsymbol{X}_{\cdot, j}\right\|_{2}} & \text { if }\left\|\boldsymbol{X}_{\cdot, j}\right\|_{2}>\tau \\
\boldsymbol{X}_{\cdot, j} & \text { if }\left\|\boldsymbol{X}_{\cdot, j}\right\|_{2} \leq \tau .\end{cases}
\end{aligned}
$$

if we assume $\tau>0$. Now, observe that:

$$
\left\|\boldsymbol{X}_{., j}\right\|_{2} \leq \tau \Rightarrow \boldsymbol{A}_{., j}^{*}=\mathbf{0} \Rightarrow\left\|\tau \boldsymbol{M}_{., j}\right\|_{2} \leq \tau
$$

subject to $\left\|M_{\text {., }}\right\|_{2} \leq 1$. Consequently, we can take $\tau M_{\text {., }}=\boldsymbol{X}_{\text {., }}$ whenever $\left\|\boldsymbol{X}_{., j}\right\|_{2} \leq \tau$. In the other case, we have:

$$
\left\|\boldsymbol{X}_{\cdot, j}\right\|_{2}>\tau \Rightarrow \boldsymbol{A}_{\cdot, j}^{*} \neq \mathbf{0} \Rightarrow \tau \boldsymbol{M}_{\cdot, j}=\tau \frac{\boldsymbol{X}_{\cdot, j}}{\left\|\boldsymbol{X}_{\cdot, j}\right\|_{2}},
$$

this shows that if we take:

$$
\tau M_{., j}=\left\{\begin{array}{ll}
\tau \frac{\boldsymbol{X}_{., j}}{\left\|\boldsymbol{X}_{\cdot, j}\right\|_{2}} & \text { if }\left\|\boldsymbol{X}_{., j}\right\|_{2}>\tau \\
\boldsymbol{X}_{\cdot, j} & \text { if }\left\|\boldsymbol{X}_{., j}\right\|_{2} \leq \tau
\end{array},\right.
$$

then eqn. (1.3) is satisfied. Therefore, $\boldsymbol{A}^{*}=\boldsymbol{X} \mathcal{S}_{\tau}(\operatorname{diag}(\boldsymbol{x})) \operatorname{diag}(\boldsymbol{x})^{-1}$ is the unique solution to our optimization problem.

