Beamer Example

eqs

April 8, 2021

About this Beamer project

This template is available for both Japanese and English.
 日本語と英語のどっちのプレゼンでも使えます.

Commands for brackets in equations

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

\cbracket: \left\{ ... \right\}

$$\frac{\beta}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^\top \boldsymbol{\phi}(\mathbf{x}_n) \right\}^2$$

\rbracket: \left[... \right]
\abracket: \left\langle ... \right\rangle

Highlight Commands

- \highlight
- \highlightcap
- \highlightcaphead
- \highlightcapoverlay
- highlightcapheadoverlay

Example Slides

Example 1 (highlight)

$$x^{2} - 6x + 2$$

= $x^{2} - 6x + 9 - 7$
= $(x - 3)^{2} - 7$

Example 2 (highlightcap, cbracket)

When we consider a Gaussian prior $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$, maximization of the corresponding posterior $p(\mathbf{w}|\mathbf{t})$ with respect to \mathbf{w} is equivalent to the minimization of

$$\frac{\beta}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^\top \boldsymbol{\phi}(\mathbf{x}_n) \right\}^2 + \frac{\alpha}{2} \mathbf{w}^\top \mathbf{w}$$
(3.55')

the minimization corresponds to (3.27) with $\lambda = \alpha/\beta$.

Example 2 (highlightcap, cbracket)

When we consider a Gaussian prior $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$, maximization of the corresponding posterior $p(\mathbf{w}|\mathbf{t})$ with respect to \mathbf{w} is equivalent to the minimization of

$$\frac{\beta}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^\top \boldsymbol{\phi}(\mathbf{x}_n) \right\}^2 + \frac{\alpha}{2} \mathbf{w}^\top \mathbf{w}$$
(3.55')
an error function

the minimization corresponds to (3.27) with $\lambda = \alpha/\beta$.

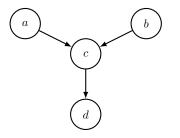
Example 2 (highlightcap, cbracket)

When we consider a Gaussian prior $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$, maximization of the corresponding posterior $p(\mathbf{w}|\mathbf{t})$ with respect to \mathbf{w} is equivalent to the minimization of

$$\frac{\beta}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_n) \right\}^2 + \frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w}$$
(3.55')
an error function a quadratic regularization

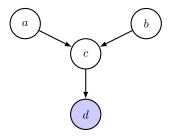
the minimization corresponds to (3.27) with $\lambda = \alpha/\beta$.

Example 3 (highlightcapoverlay)


For the moment, the noise precision β as a known constant. Where the likelihood function of t is defined as:

$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$
(3.10')

For the moment, the noise precision β as a known constant. Where the likelihood function of t is defined as:


$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$
(3.10')
The exponential of a quadratic func. of **w**

Example 4 (multi-columns)

Item 1
 Item 2
 Item 3

Example 4 (multi-columns)

