Beamer Example

```
eqs
```

April 8, 2021

About this Beamer project

－This template is available for both Japanese and English．
－日本語と英語のどっちのプレゼンでも使えます。

Commands for brackets in equations

- \nbracket: \left(... \right)

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e
$$

- \cbracket: \left
{ ... \right } \backslash \}

$$
\frac{\beta}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\top} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}
$$

- \rbracket: \left[. . . \right]
- \abracket: \left\langle ... \right\rangle

Highlight Commands

- \highlight
- \highlightcap
- \highlightcaphead
- \highlightcapoverlay
- \highlightcapheadoverlay

Example Slides

Example 1 (highlight)

$$
\begin{aligned}
& x^{2}-6 x+2 \\
& =x^{2}-6 x+9-7 \\
& =(x-3)^{2}-7
\end{aligned}
$$

Example 2 (highlightcap, cbracket)

When we consider a Gaussian prior $p(\mathbf{w} \mid \alpha)=\mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}\right)$, maximization of the corresponding posterior $p(\mathbf{w} \mid \mathbf{t})$ with respect to \mathbf{w} is equivalent to the minimization of

$$
\begin{equation*}
\frac{\beta}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\top} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}+\frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w} \tag{3.55'}
\end{equation*}
$$

the minimization corresponds to (3.27) with $\lambda=\alpha / \beta$.

Example 2 (highlightcap, cbracket)

When we consider a Gaussian prior $p(\mathbf{w} \mid \alpha)=\mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}\right)$, maximization of the corresponding posterior $p(\mathbf{w} \mid \mathbf{t})$ with respect to w is equivalent to the minimization of

$$
\begin{aligned}
& \frac{\beta}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\top} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}+\frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w} \\
& \quad \text { an error function }
\end{aligned}
$$

the minimization corresponds to (3.27) with $\lambda=\alpha / \beta$.

Example 2 (highlightcap, cbracket)

When we consider a Gaussian prior $p(\mathbf{w} \mid \alpha)=\mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}\right)$, maximization of the corresponding posterior $p(\mathbf{w} \mid \mathbf{t})$ with respect to \mathbf{w} is equivalent to the minimization of

$$
\begin{equation*}
\frac{\beta}{2} \sum_{n=1}^{N}\left\{t_{n}-\mathbf{w}^{\top} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\}^{2}+\quad \frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w} \tag{3.55'}
\end{equation*}
$$

a quadratic regularization the minimization corresponds to (3.27) with $\lambda=\alpha / \beta$.

Example 3 (highlightcapoverlay)

For the moment, the noise precision β as a known constant. Where the likelihood function of t is defined as:

$$
\begin{equation*}
p(\mathbf{t} \mid \mathbf{w})=\prod_{n=1}^{N} \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\top} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right) \tag{3.10'}
\end{equation*}
$$

Example 3 (highlightcapoverlay)

For the moment, the noise precision β as a known constant. Where the likelihood function of t is defined as:

$$
\begin{equation*}
p(\mathbf{t} \mid \mathbf{w})=\prod_{1}^{N} \mathcal{N}\left(t_{n} \mid \mathbf{w}^{\top} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right), \beta^{-1}\right) \tag{3.10'}
\end{equation*}
$$

The $\mathrm{e}^{n} \times \overline{\mathrm{p}}{ }^{1}$ nential of a quadratic func. of w

Example 4 (multi-columns)

- Item 1
- Item 2
- Item 3

Example 4 (multi-columns)

- Item 1
- Item 2
- Item 3

