Quadratic Function

matematika.pl

2015

Objectives

Objectives for today:

Introducing specific vocabulary.

- Quick revision of quadratic function.

Factorising Quadratics.
Proving Vieta's formulas.

- Carrying out gained knowledge by working out some word problems.

Quick Revision

Forms of Quadratic Function

- $f(x)=a x^{2}+b x+c$ is called the standard form.
- $f(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right)$ is called the factored
form, where x_{1} and x_{2} are the roots of the
quadratic function
- $f(x)=a(x-h)^{2}+k$ is called the vertex form

Delta Δ

Δ determines tells us how many solutions quadratic equation have:

$$
\text { number of solutions }= \begin{cases}2 & \text { when } \Delta>0 \\ 1 & \text { when } \Delta=0 \\ 0 & \text { when } \Delta<0\end{cases}
$$

The Quadratic Formula

$$
x=\frac{-b \pm \sqrt{\Delta}}{2}
$$

$$
2 a
$$

Graph of Quadratic Function

Figure 1: Graph of $f(x)=\left.a x^{2}\right|_{\{0.1,0.3,1.0,3.0\}}$

Factorising a Quadratic

Factorising- Tasks

1. Factorise $x^{2}-x-12$

Factorising a quadratic means putting it into two brackets, and is useful if you're trying to draw a graph of a quadratic solve a quadratic equation. It's pretty easy if $a=1$ (in $a x^{2}+b x+c$ form), but can be a real pain otherwise.

In order to factorise a quadratic you should follow steps outlined below:
(1) Rearrange the equation into the standard $a x^{2}+b x+c$ form.
(2) Write down two brackets: $(x)(x)$
${ }^{3}$ Find two numbers that multiply to give ' c ' and add or subtract to give 'b' (ignoring signs).
© Put the numbers in brackets and choose their signs.

Myth of Delta Δ

It's commonly believed that in order to work out roots of a quadratic function you must count Δ and use other previously established formulas. However this is untrue since factorising in many cases is as good or even better than simply counting Δ.

Example of Factorisation

Solve $x^{2}+4 x-21=0$ by factorising

$$
x^{2}+4 x-21=(x \quad)(x \quad)
$$

1 and 21 multiply to give 21 - and add or subtract to give 22 and 20.
3 and 7 multiply to give 21 - and add or subtract to give 10 and 4.

$$
x^{2}+4 x+21=(x+7)(x-3)
$$

And solving the equation:

$$
\begin{gathered}
(x+7)(x-3)=0 \\
x=-7, \quad x=3
\end{gathered}
$$

we get

Proof of Vieta's Formulas

Let's prove that

$$
x_{1}+x_{2}=\frac{-b}{a}
$$

When Δ is positive we have two roots:

$$
x_{1}=\frac{-b-\sqrt{\Delta}}{2 a}, \quad x_{2}=\frac{-b+\sqrt{\Delta}}{2 a}
$$

Substituting for x_{1} and x_{2} respectively, we receive:

$$
\begin{gathered}
x_{1}+x_{2}=\frac{-b-\sqrt{\Delta}}{2 a}+\frac{-b+\sqrt{\Delta}}{2 a}= \\
=\frac{(-b-\sqrt{\Delta})+(-b+\sqrt{\Delta})}{2 a}=\frac{-2 b}{2 a}=\frac{-b}{a}
\end{gathered}
$$

The same we could do with another pattern, which state that $x_{1} x_{2}=\frac{c}{a}$, but proving this is going to be your task in next section

Vieta's Formulas- Task

1. Prove that

$$
x_{1} x_{2}=\frac{c}{a}
$$

Glossary

verb	noun	meaning
add	addition	+
subtract	subtraction	-
multiply	multiplication	
divide	division	\div
solve	solution	getting answer
substitute substitution	$t=x^{2}$	

Some Necessary and Useful
 Vocabulary

" (n.) sign $\rightarrow+$ or -
" (n.) equation \rightarrow something $=0$

- (n.) factor \rightarrow two multiplied factors give result - (v.) factorise \rightarrow putting into brackets
- (n.) coefficient \rightarrow a constant number i.e. a, b, c in a pattern $a x^{2}+b x+c$
- (n.) quadratic function $\rightarrow f(x)=a x^{2}+b x+c$
- (n.) root $\rightarrow \sqrt{s t h}$ or solution of quadratic equation
- (n.) formula $=$ pattern

