Objectives

Objectives for today:

- Introducing specific vocabulary.
- Quick revision of quadratic function.
- Factorising Quadratics.
- Proving Vieta's formulas.
- Carrying out gained knowledge by working out some word problems.

Quick Revision

Forms of Quadratic Function

- $f(x) = ax^2 + bx + c$ is called the **standard** form.
- $f(x) = a(x x_1)(x x_2)$ is called the **factored form**, where x_1 and x_2 are the roots of the quadratic function.
- $f(x) = a(x h)^2 + k$ is called the **vertex form**.

Delta Δ

 Δ determines tells us how many solutions quadratic equation have:

> 2 when $\Delta > 0$ number of solutions = $\{1\}$ when $\Delta = 0$ when $\Delta < 0$

The Quadratic Formula

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

Graph of Quadratic Function

Figure 1: Graph of $f(x) = ax^2|_{\{0.1, 0.3, 1.0, 3.0\}}$

matematika.pl

2015

Factorising a Quadratic

Factorising a quadratic means putting it into two brackets, and is useful if you're trying to draw a graph of a quadratic solve a quadratic equation. It's pretty easy if a = 1 (in $ax^2 + bx + c$ form), but can be a real pain otherwise.

In order to factorise a quadratic you should follow steps outlined below:

- Rearrange the equation into the standard $ax^2 + bx + c$ form.
- **2** Write down two brackets: (x)(x)
- ³Find two numbers that multiply to give 'c' and add or subtract to give 'b' (ignoring signs).
- Put the numbers in brackets and choose their signs.

Myth of Delta Δ

It's commonly believed that in order to work out roots of a quadratic function you must count Δ and use other previously established formulas. However this is untrue since factorising in many cases is as good or even better than simply counting Δ .

Example of Factorisation

Solve $x^2 + 4x - 21 = 0$ by factorising.

$$x^2 + 4x - 21 = (x)(x)$$

1 and 21 multiply to give 21 - and add or subtract to give 22 and 20.

3 and 7 multiply to give 21 - and add or subtract to Substituting for x_1 and x_2 respectively, we receive: give 10 and 4.

$$x^{2} + 4x + 21 = (x+7)(x-3)$$

And solving the equation:

$$(x+7)(x-3) = 0$$

we get

$$x = -7, \quad x = 3$$
 sta

When Δ is positive we have two roots:

Factorising- Tasks

1. Factorise $x^2 - x - 12$.

2. Solve $x^2 - 8 = 2x$ by factorising.

Proof of Vieta's Formulas

Let's prove that:

=

$$x_1 + x_2 = -\frac{b}{a}$$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_1 + x_2 = \frac{-b - \sqrt{\Delta}}{2a} + \frac{-b + \sqrt{\Delta}}{2a} = \frac{(-b - \sqrt{\Delta}) + (-b + \sqrt{\Delta})}{2a} = \frac{-2b}{2a} = \frac{-b}{a}$$

The same we could do with another pattern, which tate that $x_1x_2 = \frac{c}{a}$, but proving this is going to be your task in next section.

1. Prove that

Vieta's Formulas- Task

$$x_1 x_2 = \frac{c}{a}$$

Glossary

verb	noun	meaning
add	addition	+
subtract	subtraction	
multiply	multiplication	•
divide	division	•
solve	solution	getting answer
substitute	substitution	$t = x^2$
_		

lable 1: Word Formation

Some Necessary and Useful Vocabulary

• (n.) sign \rightarrow + or -

- (n.) equation \rightarrow something = 0
- (n.) factor \rightarrow two multiplied factors give result
- (v.) factorise \rightarrow putting into brackets
- (n.) coefficient \rightarrow a constant number i.e. a, b,
- c in a pattern $ax^2 + bx + c$
- (n.) quadratic function $\rightarrow f(x) = ax^2 + bx + c$
- (n.) root $\rightarrow \sqrt{sth}$ or solution of quadratic

equation

• (n.) formula = pattern