The line of best fit via transformations

David G Radcliffe

March 16, 2017

In this note, we will show how transformations can be used to obtain a radically simple derivation of the equation of the line of best fit. Our approach also gives a simple geometric interpretation of the Pearson correlation coefficient.

Given a sequence of n points in the plane $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ we seek the linear equation $y=a+b x$ that approximates the points as closely as possible, in the sense that the sum of the squared residuals $E=\sum_{i=1}^{n}\left(Y_{i}-a-b X_{i}\right)^{2}$ is minimized.

We assume that not all of the points lie on a single horizontal or vertical line. In that case, we can apply a transformation to the points so that $\sum x_{i}=\sum y_{i}=0$ and $\sum x_{i}^{2}=\sum y_{i}^{2}=1$. The transformation is defined by

$$
x_{i}=\frac{X_{i}-\bar{X}}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2}}} \quad \text { and } \quad y_{i}=\frac{Y_{i}-\bar{Y}}{\sqrt{\sum\left(Y_{i}-\bar{Y}\right)^{2}}}
$$

This transformation is linear, so it maps lines to lines. If we transform a line fitted to the data, the sum of squared residuals is multiplied by a positive constant factor. Therefore, the transformation preserves the line of best fit.

Let $r=\sum x_{i} y_{i}$. Then

$$
\begin{aligned}
E & =\sum\left(y_{i}-a-b x_{i}\right)^{2} \\
& =\sum\left(y_{i}^{2}+a^{2}+b^{2} x_{i}^{2}-2 a y_{i}-2 b x_{i} y_{i}+2 a b x_{i}\right) \\
& =\sum y_{i}^{2}+\sum a^{2}+\sum b^{2} x_{i}^{2}-\sum 2 a y_{i}-\sum 2 b x_{i} y_{i}+\sum 2 a b x_{i} \\
& =1+n a^{2}+b^{2}-2 b r \\
& =\left(1-r^{2}\right)+n a^{2}+(b-r)^{2} .
\end{aligned}
$$

The sum is minimized when $a=0$ and $b=r$, so the line of best fit is $y=r x$. What a simple equation! Unfortunately, the equation is a bit messier when expressed in terms of the original variables.

$$
\begin{aligned}
\frac{y-\bar{Y}}{\sqrt{\sum\left(Y_{i}-\bar{Y}\right)^{2}}} & =\left(\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2} \sum\left(Y_{i}-\bar{Y}\right)^{2}}}\right)\left(\frac{x-\bar{X}}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2}}}\right) \\
y-\bar{Y} & =\left(\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right)(x-\bar{X}) .
\end{aligned}
$$

Note that r is the Pearson correlation coefficient of the sample. This shows that the correlation coefficient can be interpreted geometrically as the slope of the line of best fit when the x and y values are standardized.

