Introduction: Neural Networks	Need for a novel method	Self Taught Learning 00000000	Experiments 00000	Autoencoders 000

Self taught Learning Based on the paper "Self-taught learning: Transfer Learning from Unlabeled Data"

Prateekshit Pandey

BTech CSE, 2nd year

January 3, 2014

Introduction: Neural Networks ●○	Need for a novel method	Self Taught Learning 00000000	Experiments 00000	Autoencoders 000
Neural Nets: Basics				
Basics				

- The basic study of learning starts from neurons (McCulloch-Pitts neuron model).
- A set of neurons when assigned to work on the same set of features, it forms a **layer of neurons for a neural network.**

Figure 1 : A sample neural net

Introduction: Neural Networks ○●	Need for a novel method	Self Taught Learning 00000000	Experiments 00000	Autoencoders 000		
Training of a neural net						
Feed forward and back-propagation						

- Feed forward: Calculate activation layer of each layer and pass it on to the next layer, and thus, calculate the output layer.
- Back Propagation: Starting from the output layer, calculate the error for each layer.

•
$$\delta^{L} = -(y - a^{(L)}) * f'(z^{(L)})$$

•
$$\delta^{k} = ((\tilde{W}^{(k)})^{T}.\delta^{(k+1)}) * f'(z^{(L)})$$
 for k = L-1, L-2, ..., 3, 2

• The cost function for a neural network is given by a one-half squared error error function.

•
$$J(W,b) = \frac{1}{m} \sum_{i}^{m} (\frac{1}{2} ||h_{W,b}(x^{(i)}) - y^{(i)}||^2)$$

• Gradient can be calculated using the errors calculated for each layer. This gradient can then be input to any optimization algorithm like gradient descent or L-BFGS.

•
$$\nabla_{W^{(l)}} J(W, b) = \delta^{(l+1)} (a^{(l)})^T$$

•
$$\nabla_{b^{(l)}}J(W,b) = \delta^{(l+1)}$$

Introduction: Neural Networks	Need for a novel method ●○	Self Taught Learning 00000000	Experiments 00000	Autoencoders 000		
Real world learning problems						
Real world problems						

- Perform speaker identification, provided unlimited access to natural sounds
- Perform classification of elephants and rhinos, provided unlimited access to natural images
- Perform email foldering of ICML reviewing emails and NIPS reviewing emails, provided unlimited access to news articles (text).
- Conclusion: always a mix of labeled and unlabeled data.

Introduction: Neural Networks	Need for a novel method ○●	Self Taught Learning 00000000	Experiments 00000	Autoencoders
Real world learning problems				
Problems faced				

- Labeled data: difficult and expensive to obtain. Learning on a small data set may result in not being able to generalize over a larger data set.
- Unlabled data: expensive to find unlabeled data with desired class labels.
- **Motivation**: exploit the abundance of unlabeled data to generalize over a larger scale of data.

Previous algorithms and their shortcomings

- **Supervised learning**: works perfectly well if large amount of labeled data is provided, but fails to generalize well in case of scarcity of labeled data.
- Semi-supervised learning: needs labeled as well as unlabeled data for learning; assumes that the unlabeled data can be labeled with the same labels as the classification task.
- **Transfer learning**: typically requires transfer of knowledge from one supervised task to another, thus it requires additional labeled data.
- Idea: Transfer knowledge from unalabeled data.

Introduction: Neural Networks	Need for a novel method	Self Taught Learning o●○○○○○○	Experiments 00000	Autoencoders 000	
Motivation					
Advantages and further motivations					

- Use unlabeled data (from the same domain) without any restrictions.
- More accurately reflects how humans may learn, since much of human learning is believed to be from unlabeled data.

Introduction: Neural Networks	Need for a novel method	Self Taught Learning	Experiments 00000	Autoencoders 000		
Problem Formalism						
Problem formalisation						

- Number of classes to classify data: C
- A set of m labeled examples: $\{(x_{l}^{(1)}, y^{(1)}), (x_{l}^{(2)}, y^{(2)}), ..., (x_{l}^{(m)}, y^{(m)})\}$ where $x_{l}^{(i)} \epsilon R^{n}$ and $y^{(i)} \epsilon \{1, 2, ..., C\}$

• A set of k unlabeled example: $\{x_u^{(1)}, x_u^{(2)}, ..., x_u^{(k)}\}$ where $x_u^{(i)} \epsilon R^n$

- The learning algorithm outputs a hypothesis $h: \mathbb{R}^n \to \{1, 2, ..., C\}$
- The hypothesis function tries to mimic he input-output relationship represented by the labeled training data.
- This hypothesis function is tested under the same distribution from which labeled data was drawn.

Introduction: Neural Networks	Need for a novel method	Self Taught Learning ○○○●○○○○	Experiments 00000	Autoencoders 000
A sample approach				
Learning high le	evel features -			

- We start with using the large unlabeled data to learn a higher level, more succint representation of the inputs.
- In case of images:
 - The inputs x_u⁽ⁱ⁾ are vectors of pixel intensities of the images; the algorithm will try to learn 'basic elements' of the image.
 - The 'basic elements' can include some strong correlation between rows of pixels. Thus, it will be able to learn *edges*.
 - Thus, we will be able to present an image in terms of its edges, rather than raw pixel intensities.
- By applying learned representation to the labeled data, we obtain a higher level representation of the data. This makes the task of supervised learning much easier.

Introduction: Neural Networks	Need for a novel method	Self Taught Learning	Experiments 00000	Autoencoders 000
A sample approach				
Learning high le	evel features -	II		

- Following a modified version of sparse coding by Olshausen & Field (1996).
 - Optimization objective:
 - minimize_{*b,a*} $\sum_{i}^{k} ||x_{u}^{(i)} \sum_{j} a_{j}^{(i)} b_{j}||_{2}^{2} + \beta ||a^{(i)}||_{1}$
 - Number of bases: s
 - Basis: $b = \{b_1, b_2, ..., b_s\}; b_j \epsilon R^n$
 - Activations: $a = \{a^{(1)}, a^{(2)}, ..., a^{(k)}; a_i^{(i)} \in \mathbb{R}^s\}$
 - The number of bases s can be much larger than s.
 - The optimization objective balances two terms:
 - The first quadratic term pushes each $x_u^{(i)}$ to be reconstructed well as a weighted linear combination of the bases.
 - It encourages the activation to have a low L₁ norm, thus encouraging the activations to be **sparse**.

Introduction: Neur 00	ral Netw	Need for a	novel method	Self Taug ○○○○○●	sht Learning 00	Experiments 00000	Autoencoders
A sample approach							
	-		~				

Unsupervised Feature Construction

- It is often quite easy to obtain large amounts of unabeled data that shares several salient features with the classification task of interest.
- After learning a set of bases *b* from the unlabeled data, we compute the features $\hat{a}(x_l^{(i)})$ for the labeled data.
- We do this by solving the following optimization problem: $\hat{a}(x_l^{(i)}) = argmin_{a^{(i)}}||x_l^{(i)} - \sum_j a_j^{(i)}b_j||_2^2 + \beta||a^{(i)}||_1$
- Since, it is a L1 regularized optimization, we obtain a sparse representation of the labeled data

Introduction: Neural Networks	Need for a novel method	Self Taught Learning ○○○○○○●○	Experiments 00000	Autoencoders 000
A sample approach				

Algorithm: Self-taught learning via Sparse Coding

inputLabeled training set 50 mmT = { $(x_l^{(1)}, y_l^{(1)}), (x_l^{(2)}, y_l^{(2)}), ..., (x_l^{(m)}, y_l^{(m)})$ } Unlabeled data { $x_u^{(1)}, x_u^{(2)}, ..., x_u^{(k)}$ } **output** Learned classifier for the classification task. **algorithm** Using unlabeled data { $x_u^{(i)}$ }, solve the optimization problem to obtain bases b. Compute features for the classification task to obtain a new labeled training set $\hat{T} = {(\hat{a}(x_l^{(i)}), y^{(i)})_{i=1}^m}$, where $\hat{a}(x_u^{(i)}) = \sum_{i=1}^{i} (i) \sum_{j=1}^{i} (j) \sum_{$

 $\hat{a}(x_l^{(i)}) = argmin_{a^{(i)}} ||x_l^{(i)} - \sum_j a_j^{(i)} b_j||_2^2 + \beta ||a^{(i)}||_1$ Learn a classifier by applying a supervised learning algorithm (eg. SVM) to the labeled training set \hat{T} . **result** the learned classifier C.

Introduction: Neural Networks	Need for a novel method	Self Taught Learning ○○○○○○●	Experiments 00000	Autoencoders
A sample approach				

Comparison with other methods

- Every self-taught learning algorithm must be able to detect some structure using the unlabeled data.
- Principal Component Analysis (PCA): identifies a lower dimensional subspace of maximal variation within the unlabeled data. The top *T* ≤ *n* principal components *b*₁, *b*₂, ..., *b*_T are the solution to the optimization problem: minimize_{b,a} ∑_i ||*x*⁽ⁱ⁾_u − ∑_j *a*⁽ⁱ⁾_j*b*_j||²₂ such that *b*₁, *b*₂, ..., *b*_T are orthogonal
- PCA seems convenient because it can be solved easily using standard numerical software. But, as compared to the sparse encoder, it has some limitations:
 - PCA results in a linear feature extraction; features a_j⁽ⁱ⁾ are simply a linear function of the input. Sparse coding features â(x) are inherently non-linear.
 - PCA assumes bases to be orthogonal, hence the number of PCA features cannot exceed n. This is not a limitation in sparse coding.

Introduction: Neural Networks	Need for a novel method	Self Taught Learning 00000000	Experiments ●0000	Autoencoders
Experiment data				

Experiments: procedure followed

- For computational reasons, the unlaabeled data was preprocessed by applying PCA to reduce its dimensions.
- The sparse coding based algorithm was then applied in the resulting principal component space.
- The learned features were then used to construct features for each input from the supervised classification task.

Introduction: Neural Networks	Need for a novel method	Self Taught Learning 00000000	E×periments 0●000	Autoencoders 000
Experiment data				
Experiment dat	a - I			

Domain	Unlabeled	Labeled	Classe	sRaw features
	data	data		
Image Clas-	10 images	Caltech101	101	Intensities in
sification	of outdoor	image clas-		14x14 pixel
	scenes	sification		patch
		dataset		
Handwritten	Handwritten	Handwritten	26	Intensities in
character	digits (0-9)	english		28x28 char-
recognition		characters		acter/digit
		(a-z)		image

Table 1 : Details of self-taught learning applications evaluated in the experiments conducted by Raina et al (2009)

Introduction: Neural Networks	Need for a novel method	Self Taught Learning 00000000	Experiments 00000	Autoencoders 000
Experiment data				
Experiment dat	a - II			

Domain	Unlabeled	Labeled	Classe	sRaw features
	data	data		
Font charac-	Handwritten	Font charac-	26	Intensities in
ter recogni-	English	ters (a/A -		28x28 charac-
tion	characters	z/Z)		ter image
	(a-z)			
Song genre	Song snip-	Song snip-	7	Long frequency
classifica-	pets from	pets from 7		spectogram
tion	10 genres	diff. genres		over 50ms time
				window

Table 2 : Details of self-taught learning applications evaluated in the experiments conducted by Raina et al (2009)

Introduction: Neural Networks	Need for a novel method	Self Taught Learning 00000000	Experiments 000●0	Autoencoders 000
Experiment data				
Experiment data	a - 111			

Domain	Unlabeled	Labeled	Classe	sRaw features
	data	data		
Webpage	100,000	Categorized	2	Bag-of-words
classsifica-	news ar-	webpages		with 500 words
tion	ticles	(from		
	(Reuters	DMOZ		
	newswire)	hierarchy)		
UseNet arti-	100,000	Categorized	2	Bag-of-words
cle classifi-	news ar-	UseNet		with 377 words
cation	ticles	posts (from		
	(Reuters	SRAA		
	newswire)	dataset)		

Table 3 : Details of self-taught learning applications evaluated in the experiments conducted by Raina et al (2009)

Introduction:	Neural	Networks

Need for a novel method

Self Taught Learning 00000000 Experiments 00000 Autoencoders

Experiment data

Results: Accuracy on the self-taught learning tasks

Domain	Training	Unlabeled	Labeled	Labeled
	set size	SC	PCA	SC
	100	39.7%	36.2%	31.4%
Handwritter	500	58.5%	50.4%	50.8%
	5000	73.1%	73.5%	73.0%
	100	7.0%	5.2%	5.1%
Font char	500	16.6%	11.7%	14.7%
	1000	23.2%	19.0%	22.3%
	4	64.3%	55.9%	53.6%
Webpages	10	75.9%	57.0%	54.8%
	20	80.4%	62.9%	60.5%
	4	63.8%	60.5%	50.9%
Uservet	10	68.7%	67.9%	60.8%

Table 4 :Accuracy on the self-learning tasks observed in theexperiments conducted by Raina et al (2009)

Introduction: Neural Networks

Need for a novel method $\circ\circ$

Self Taught Learning

Experiments 00000 Autoencoders ●○○

Introduction

Autoencoders: introduction

An **autoencoder** neural network is an unsupervised learning algorithm that applies backpropagation, setting the target values to be equal to the inputs.

Figure 2 · Autoencoder

Introduction: Neural Networks	Need for a novel method	Self Taught Learning 00000000	Experiments 00000	Autoencoders ○●○
Introduction				
Autoencoders:	introduction			

- The autoencoder tries to learn a function $h_{W,b}(x) \approx x$. In other words, it is trying to learn an approximation to the identity function, so as to output \hat{x} that is similar to x.
- By placing constraints on the network, such as by limiting the number of hidden units, we can discover interesting structure about the data.
 - If the number of layers in the middle layer is less than the input, then it functions as a compressed representation of the input.
 - If the number of layers in the middle layer is more than the input, then it functions as a sparse representation of the input.

Introduction: Neural Networks	Need for a novel method	Self Taught Learning 00000000	Experiments 00000	Autoencoders ○○●
Algorithm				
How it works				

- By backpropagation, the error for the middle layer, or encoding layer, will be given by: $\delta_i^{(2)} = \left(\sum_{j=1}^{s_2} W_{ji}^{(2)} \delta_j^{(3)}\right) f'(z_i^{(2)})$
- We introduce a term: $\hat{\rho}_j = \frac{1}{m} \sum_{i=1}^m \left[a_j^{(2)}(x^{(i)}) \right]$ and enforce $\hat{\rho}_j = \rho$ where ρ is the sparsity parameter and is kept near to zero (0.05). The sparsity parameter ensures that the activations are near to zero, and hence, sparse.
- Because of the sparsity parameter, a penalty term is added to the delta calculation for the encoding layer: $\delta_i^{(2)} = \left(\left(\sum_{j=1}^{s_2} W_{ji}^{(2)} \delta_j^{(3)} \right) + \beta \left(-\frac{\rho}{\hat{\rho}_i} + \frac{1-\rho}{1-\hat{\rho}_i} \right) \right) f'(z_i^{(2)})$