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Introduction
Model Reduction Problem Revisited

Given a MIMO state space model

Eẋ = Ax+Bu

y = Cx
(1)

where, E,A ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n,
u ∈ Rm,y ∈ Rp,x ∈ Rn and n is sufficiently large.

It is required to obtain the following reduced order model

Erż = Arz+Bru

y = Crz
(2)

where, Er,Ar ∈ Rq×q,Br ∈ Rq×m,Cr ∈ Rp×q,
u ∈ Rm,y ∈ Rp, z ∈ Rq q << n
Er = WTEV,Ar = WTAV,Br = WTB,Cr

T = CTV
W,V are suitable Krylov subspace based projection matrices.
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Moments and Markov Parameters

The transfer function of the system in (1) is

G(s) = C(sE−A)−1B

By assuming that A is nonsingular, the Taylor series of this transfer
function around zero is:

G(s) = −CA−1B−C(A−1E)A−1Bs− · · · −C(A−1E)
i
A−1Bsi − · · ·

Coefficients of powers of s are known as moments
i-th moment:

M0
i = C(A−1E)iA−1B, i = 0, 1, . . .

Also,

M0
i = −

1

i

diG(s)

dsi

∣∣∣
s=0

is the value of subsequent derivatives of the transfer function G(s) at the
point s = 0
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Contd...

A different series in terms of negative powers of s is obtained when
expanded about s→∞

G(s) = CE−1Bs−1+C(E−1A)E−1Bs−2+· · ·+C(E−1A)iE−1Bs−i+· · ·

and the coefficients are known as Markov parameters.

Model reduction is achieved by the means of matching of Moments
(Markov parameters)
Explicit moment matching becomes numerically cumbersome for large
system order

Go for implicit moment matching: Krylov subspace based Projection
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Remarks 1

Asymptotic Waveform Evaluation (AWE) method is based
on explicit moment matching

Matching at s = 0 is known as Padé Approximation, and
steady state response (low frequency) is reflected in the
reduced order model.

Matching at s→∞ is known as Partial Realization, and
the reduced order model is a good approximation of the
HF response.

Matching at s = s0, i. e. at some arbitrary value of s is
known as Rational Interpolation and is aimed at
approximating system response at specific frequency band
of interest.
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Defining Krylov Subspace

Kq(A,b) = span{b,Ab, . . . ,Aq−1b},

A ∈ Rn×n and b ∈ Rn is called the starting vector. q is some given
positive integer called index of the Krylov sequence.

The vectors b,Ab, . . . , constructing the subspace are called basic
vectors.
The Krylov subspace is also known as controllability subspace in
control community.
For each state space, there are two Krylov subspaces that are dual to
each other, input Krylov subspace and output Krylov subspace.
Either or both of subspaces can be used as projection matrices for
model reduction.
The respective method is then called One-Sided/Two-sided
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Input and Output Krylov Subspaces

Input Krylov subspace

Kq1

(
A−1E,A−1b

)
= span

{
A−1b, . . . ,

(
A−1E

)q1−1A−1b}
Output Krylov Subspace

Kq2

(
A−TET,A−Tc

)
= span

{
A−Tc, . . . ,

(
A−TET

)q2−1
A−Tc

}

V is any basis of Input Krylov Subspace
W is any basis of Output Krylov Subspace
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Moment Matching: SISO

Theorem If the matrix V used in (2), is a basis of Krylov
subspace Kq1

(
A−1E,A−1b

)
with rank q and matrix W is

chosen such that the matrix Ar is nonsingular, then the first q
moments (around zero) of the original and reduced order
systems match.
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Moment Matching: SISO

Proof: The zero-th moment of the reduced system is

mr0 = cTr A
−1
r br = cTV

(
WTAV

)−1
WTb

The vector A−1b is in the Krylov subspace and it can be
written as a linear combination of the columns of the matrix V,

∃r0 ∈ Rq : A−1b = Vr0

Therefore,(
WTAV

)−1
WTb =

(
WTAV

)−1
WT

(
AA−1

)
b

=
(
WTAV

)−1
WTAVr0

= r0
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Contd...

With this, mr0 becomes

mr0 = cTV
(
WTAV

)−1
WTb = cTVr0 = cTA−1b = m0

For the next moment (first moment) consider the following result:(
WTAV

)−1
WTEV

(
WTAV

)−1 (
WTb

)
=
(
WTAV

)−1
WTEVr0

=
(
WTAV

)−1
WTEA−1b

and the fact that A−1EA−1b is also in the Krylov subspace can be
written as A−1EA−1b = Vr1
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Thus,(
WTAV
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Remarks 2

For the second moment, the results of first moment can
be used and the fact that

(
A−1E

)2
A−1b can be written

as a linear combination of columns of matrix V

The proof can be continued by repeating these steps
(Induction) until mr(q−1) = m(q−1) i.e. q moments match.

The method discussed above was one-sided as we did not
go for computing W. Usually, W = V is chosen

In two-sided method W is chosen to be the basis of output
Krylov subspace, then 2q moments can be matched.

Proof is similar for matching Markov parameters and the
MIMO case [3,4].
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Issues with Krylov Methods

Major issues with Krylov Subspace based MOR Methods:

1 Orthogonalization

2 Stopping Point of Iterative Scheme

14 / 20
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Orthogonalization

The Krylov vectors are known to lose independence readily
and tend to align towards the dominant vector, even for
moderate values of n and q.

The remedy lies in constructing an orthogonal basis using
Gram-Schmidt process.

However, classical GS is also known to be unstable

Go for Modified GS methods —
Arnoldi (Unsymmetric A) / Lanczos (Symmetric A)
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Arnoldi Algorithm
Using Modified Gram-Schmidt Orthogonalization

Algorithm 1 Arnoldi

1: Start: Choose initial starting vector b,v = b
‖b‖

2: Calculate the next vector: v̂i = Avi−1
Orthogonalization:

3: for j = 1 to i− 1 do
4: h = v̂T

i vj , v̂i = v̂i − hvj

Normalization:
5: i-th column of V is vi =

v̂i
‖v̂i‖ stop if v̂i = 0

6: end for

Output of Arnoldi Iteration:

1 Orthonormal Projection matrix V,

2 Hessenberg Matrix H = VTAV
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Stopping Criterion

When to stop the iterative scheme?
is another question to be answered

This also decides the size of the ROM

TU-M: Singular values based stopping criterion.1

IIT-D: A more efficient criterion based on a index known
as CNRI2 is proposed.3

1B. Salimbahrami and Lohmann, B., “Stopping Criterion in Order
Reduction of Large Scale Systems Using Krylov Subspace Methods”, Proc.
Appl. Math. Mech., 4: 682–683, 2004.

2Coefficent of Numerical Rank Improvement
3M. A. Bazaz, M. Nabi and S. Janardhanan. “A stopping criterion for

Krylov-subspace based model order reduction techniques”. Proc. Int.
Conf. Modelling, Identification & Control (ICMIC), pp. 921 - 925, 2012
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Comparison with Balanced Truncation

Parameter BT Krylov

No. of Flops O
(
n3
)

O
(
q2n
)

Numerical Reliability for large n No Yes

Accuracy of the reduced system More Accurate Less Accurate

Range of Applicability ∼ 103 ∼ 104 or higher

Stability Preservation Yes No

Iterative Method No Yes

Reliable Stopping Criterion Yes No*
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