DUAS TRANSFORMADAS DISCRETAS DE HILBERT

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

XXVII SALÃO DE INICIACÃO CIENTÍFICA

19-23 DE OUTUBRO DE 2015, CAMPUS VALE

OBJETIVO

Desenvolver uma Teoria de Representação para as Transformadas Discretas de Hilbert análoga à famosa representação de Stefanie Petermichl para a Transformada Contínua de Hilbert.

METODOLOGIA

Adotamos uma metodologia baseada em Experimentos Númericos e Simulações no MATLAB para validar os novos resultados alcançados a partir daqueles encontrados na literatura.

FÓRMULAS

Pelo "Valor Principal de Cauchy", escrevemos a Transformada Contínua de Hilbert do sinal s(t) na seguinte forma :

$$H\{s(t)\} = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{s(y)}{t - y} dy \tag{1}$$

enquanto que definimos a Transformada Discreta Sequencial de Hilbert por :

$$(H^d x)(i) := \sum_{j \in \mathbb{Z}, j \neq i} \frac{x_j}{i - j}$$
 (2)

para $i \in \mathbb{Z}$, onde $x = \{x_n\}_{n \in \mathbb{Z}}$,

e a Transformada Discreta Finita de Hilbert por :

$$(H_{N}x)(i) := \sum_{|j| \leq N, j \neq i} \frac{x_j}{i - j} \tag{3}$$

para $|i| \leq N$, onde $x \in \mathbb{R}^{2N+1}$.

APRESENTADOR

ARMAND AZONNAHIN, MATEMÁTICA COMPUTACIONAL

ORIENTADOR

JEAN CARLO PECH DE MORAES, PhD IN MATHEMATICS

PROPESQ/UFRGS/2015

PIBIC-CNPq 2014-2015

TEOREMA 1

A Transformada Discreta Finita de Hilbert H_N é limitada em $I^2(\mathbb{Z}_{2N+1})$, com cotas superiores independentes da dimensão N, isto é, existe uma constante C>0 independente de N tal que :

$$||H_{N}x||_{l^{2}(\mathbb{Z}_{2N+1})} \leq C||x||_{l^{2}(\mathbb{Z}_{2N+1})} \tag{4}$$

para todos os vetores $x \in l^2(\mathbb{Z}_{2N+1})$.

TEOREMA 2

Se pudermos ver a Transformada Discreta Sequencial de Hilbert H^d como sendo o limite de H_N quando $N \to \infty$, então H^d deve ser um operador limitado em $I^2(\mathbb{Z})$, isto é, existe uma constante C > 0 tal que :

$$||H^dx||_{l^2(\mathbb{Z})} \le C||x||_{l^2(\mathbb{Z})}$$
 (5)

para todos os vetores $x \in I^2(\mathbb{Z})$.

APLICAÇÕES DA DHT ...

- Descrição de sinais analíticos e redes de fase mínima;
- ► Geração do espectro de fase de um sinal dado o seu espectro em magnitude;
- ► Análise espectral . . .

CONCLUSÃO

Nas condições de Nyquist, provamos que a \mathcal{H}^d possui as mesmas características que a Transformada Contínua de Hilbert . . .

HORÁRIO E LOCAL

Sessão: Matemática

Data: 22/10/2015 (quinta-feira)

Horário: 14:00 — 18:00

Local:Sala 207 Prédio F - 43123

AGRADECIMENTOS

CNPq, UFRGS e Radboud University