
Constraints for BETYdb

David LeBauer
University of Illinois at Urbana-Champaign

Scott Rohde
University of Illinois at Urbana-Champaign

February 13, 2015

1 Introduction

We are proposing implementation of database-level constraints. We are con-
sciously violating Ruby’s “Active Record” approach. The Rails Guide on Active
Record (database) Migrations suggests

The Active Record way claims that intelligence belongs in your mod-
els, not in the database. As such, features such as triggers or foreign
key constraints, which push some of that intelligence back into the
database, are not heavily used.

We think, however that the following quote (see http://ewout.name/2009/12/rails-
models-with-teeth-and-database-constraints) expresses compelling reasons for
bucking the“Active Record way” and enforcing database integrity at the database
level:

Data tends to outlive its applications. A tight data model is a good
foundation for an application and can save you a lot of trouble when
migrating the data to a different system (years later). Database con-
straints can make your models even tighter, and enforce integrity
rules that are hard to enforce in a multi-process application envi-
ronment.

Given that the Ruby Web application is only one of the ways in which we use
the database, it seems reasonable to go with the SQL database-level constraints.

There are certain costs, however, to stepping outside of Rails to manage
database structure. First, while we may continue to use Rails migrations to man-
age updates to database structure, in many cases we will have to write the code
of those migrations directly in SQL (using the execute %{ <SQL statements>

1

http://guides.rubyonrails.org/migrations.html#active-record-and-referential-integrity
http://guides.rubyonrails.org/migrations.html#active-record-and-referential-integrity
http://ewout.name/2009/12/rails-models-with-teeth-and-database-constraints/
http://ewout.name/2009/12/rails-models-with-teeth-and-database-constraints/

} construct). This increases the chance that our migrations will no longer be
DBMS-agnostic.1

Second, we can no longer completely define the structure of the database in
the file db/schema.db—the language Rails has for expressing database structure
is simply not expressive enough. We must switch (and have in fact done so)
to using db/production structure.db as the repository of the complete and
definitive description of our database schema.

Third, we must handle the errors that arise from attempting a change to the
database that would violate one of our constraints. In some cases (non-NULL
constraints, for example) there are parallel Rails model validations that can
enforce constraints (at the cost of some duplication) on the Rails side. In other
cases, we will have to catch and handle exceptions generated by the database
adapter when a database constraint is violated. This code is likely to be highly
DBMS-dependent, but as remarked in the footnote, we are not overly concerned
about this.

2 Categories of Constraints

The kinds of constraints we wish to impose may be roughly classified as follows:

1. value constraints

(a) range constraints on continuous variables

(b) “enum” constraints on, for example, state or country designations;
this is a form of normalization (“US”, “USA”, and “United States”,
for example, should be folded into a common designation)

(c) consistency constraints; for example (year, month, day) can’t be
(2001, 2, 29); or city-(state)-country vs. latitude-longitude (this may
be hard, but some level of checking may not be too difficult; for
example,

select * from sites where country = ‘United States’

and lon > 0;

shouldn’t return any rows)

2. foreign key constraints
We also include here certain consistency constraints involving foreign keys.
For example, if traits.cultivar id is non-null, the value of cultivars.specie id

in the referred-to row should equal trait.specie id.

3. non-NULL constraints

1We can at least partially get around the limitations of built-in Rails constructs for ex-
pressing database structures by employing gems that extend these constructs. For example,
the foreigner gem allows one to write foreign-key constraints within migrations in Ruby rather
that having to switch to native SQL code. Given that we think it far more likely that we will
abandon using Rails as a front end to our database before we will abandon using PostgreSQL
as the management-system for that database, we see little benefit to making use of these
extensions.

2

4. uniqueness constraints–above all, designation of natural key
In keeping with Rails conventions, we grudgingly continue to use id as
the primary key for all or nearly all non-join tables, but wherever pos-
sible, we shall try to designate some column or set of columns as the
”true, natural” key for the table and will back up this designation with
a UNIQUE constraint on the constituent columns together with non-NULL
constraints on those columns. This will help prevent what has been a per-
sistent problem with duplicate data—for example, two rows in the species
table that are essentially the same, differing only in the value contained
in the id column.

In the sections that follow, constraints that have already been implemented
are marked with a checkmark (X).

2.1 Reference Documentation

to do: update these

• Google Doc Spreadsheet

• SQL dump with constraints [Note: The foreign-key constraints listed here
have been superceded by the draft “add foreign key contraints” migration
in BETYdb git branch ForeignKeyConstraints.]

• redmine issue 1915 and related issues / subtasks

3 Value Constraints

Value constraints serve several useful functions:

• They provide a sanity check on data. For example, we can ensure we don’t
have negative values for yields or have temperature values of −500 degrees
Celsius.

• They help prevent duplicate data. For example, even if we impose a
uniqueness constraint on the “name” column of the variables table, this
alone won’t prevent having one row with name = ‘leafC’ and another row
with name = ‘ leafC ’;

• They help standardize data. For example, without a standardization con-
straint on country names, a user searching for sites using the string ‘United
States’ may get different results from a user searching with the string
‘U.S.’.

Most value constraints will be implemented with a CHECK constraint.
More complicated constraints involving multiple tables may require defining
a PL/pgSQL function. Even in simpler cases, defining a function to implement
a CHECK constraint may make sense if the same sort of constraint will be used

3

https://docs.google.com/spreadsheets/d/1fJgaOSR0egq5azYPCP0VRIWw1AazND0OCduyjONH9Wk/edit#gid=956483089
https://gist.github.com/dlebauer/5522cfd6629cfa2a2610
https://ebi-forecast.igb.illinois.edu/redmine/issues/1915

repeatedly. Alternatively, we may wish to use SQL’s CREATE DOMAIN state-
ment to define a type that has the constraints we need built in, and then alter
the columns we wish to constrain to be of the new type.

Since not-NULL constraints may be viewed as a sort of value constraint and
are in any case quite bound up with them, they will be dealt with here as well.
The set of not-NULL constraints we wish to use is summarized in a separate
section below, together with some general remarks about the use of NULLs.

When a default value other than NULL should be set, these are mentioned
here as well.

Each table is given its own section below (excepting certain join tables).
In most cases, all columns are mentioned except (1) the ‘id’ surrogate key
columns; (2) foreign-key columns; (3) the created_at and updated_at time-
stamp columns (which are dealt with all together in the following “General
constraints” section).

After each column name (sometimes with its data type, in parentheses),
the constraint that should apply immediately follows, if one has been decided
upon. After this, a paragraph (beginning with “Discussion:”) commenting on
the chosen constraint or discussing considerations for adding additional future
constraints may follow.

A checkmark (X) after a constraint indicates it has been implemented.

3.1 General constraints applying to multiple tables

• Text column values should not have leading or trailing white spaces.
To make this easier, we define some PL/pgSQL functions:

– A function normalize_whitespace(string) is defined to return
TRIM(REGEXP_REPLACE(string, ’\s+’, ’ ’)).

– A function to test for normalization, is_whitespace_normalized(string),
returns the result of the test string = normalize_whitespace(string).

Then check constraints of the form

CHECK(is whitespace normalized(<columnname>))

can then be added for each column that should be whitespace-normalized.
These constraints, in conjunction with uniqueness constraints, will go a
long way toward ensuring that rows that are essentially duplicates, differ-
ing only in the value of the id column and in the white space that occurs
in their textual columns, do not occur.

• All created_at and updated_at columns should have default value NOW().
If feasible, a trigger function should be defined to set the updated_at

column to NOW() upon UPDATE if no explicit value is given in the update.

3.2 citations

author not NULL, whitespace-normalized

4

Discussion: This should always be just a last name, but there are a few
cases where full names or a list of names is given.

year (integer) not NULL

Discussion: Consider adding a range restriction—both a lower bound (say
1800—are we ever going to want to cite Aristotle or even Leeuwenhoek?)
and some upper bound (say, 2200), or better, a check constraint such as
CHECK(year <= EXTRACT(YEAR FROM NOW()) + 1), assuming we would
never have a citation year more than one year in the future.

title not NULL, whitespace-normalized

Discussion: The Data Entry guide recommends using ‘NA’ to denote an
unknown title, journal, volume (vol) or page (pg). Note, however, that
‘NA’ currently never appears in either the journal column or the pg

column and that it can’t be used for vol since it has datatype integer.
Moreover, since ‘NA’ is commonly used to designate both “not applicable”
and “not available”, which mean very different things, we feel it is better
to write out which one is meant. (A checkbox or radio button on the Rails
app form could both make this easier and help standardize these special
values.)

journal not NULL, whitespace-normalized

vol (integer) must be > 0.

Discussion: We’ll allow this to be NULL for now until we decide how to
deal with missing values.

pg not NULL; should match the regular expression
’^([1-9]\d*(\u2013[1-9]\d*)?)?$’ (tentative)

Discussion: This should be either a single positive integer or two integers
separated by a dash. Currently, nearly all values match the regular ex-
pression ’^[1-9]\d*([-\u2013][1-9]\d*)?$’. Ignoring the one case of
the value ‘test’, those that don’t either have leading or trailing spaces, a
doubled hyphen, have leading zeros in the numbers, look like dates (e.g.
10/21/10) or are the empty string. Values should probably be normalized
upon entry to strip spaces and replace hyphen(s) or the word “to”” with
an n-dash, the conventional typographic symbol for representing a range
of numbers.

url should match a regular expression for URLs or the emtpy string (tentative)

Discussion: At a minimum this should be whitespace-normalized. Un-
less we want to continue values like ‘paper copy available in blue folder’,
‘NA’, and ‘not found’, we could require entries to either be the empty
string or look like an actual URL. (We could relax this somewhat to allow
some finite set of prescribed values like ‘unknown’ or ‘not yet available’ in
addition to bona fide URLs.)

5

pdf same as for url

Discussion: Many, but by no means all, have a ‘pdf’ extension in the
filename portion of the URL.

doi should match the regular expression ’^(|10\.\d+(\.\d+)?/.+)$’

Discussion: All but 13 of the existing values match
’^(|10\.\d+(\.\d+)?/.+)$’. Most of the non-matching values are either
‘NA’ or they prefix the doi with ‘doi:’ or with ‘http://dx.doi.org/’. These
prefixes should be stripped for succinctness and uniformity since they don’t
add information not already contained in the column name. Unless we
wish to distinguish between unknown DOIs and unregistered citations, we
can just use the empty string (rather than ‘NA’) for both.

3.3 covariates

level should be in the range corresponding to variable referenced by variable id

X
n should be positive (tentative)

Discussion: For now, this is allowed to be NULL. Decide if 1 is a permis-
sible value.

statname and stat These are interdependent. Check that statname is one
of “SD”, “SE”, “MSE”,“95%CI”, “LSD”, “MSD” or the empty string.
Create a domain type for this since it is also used elsewhere. stat should
be NULL if statname is the empty string and should be non-null otherwise.
Tentative: stat should also be NULL (and statname equal to the empty
string) if n is NULL or equal to 1 and non-null otherwise.
Discussion: Do any of these statistics have any meaning if n = 1? Should
these values be required if n is greater than 1?

3.4 cultivars

name should be whitespace-normalized

ecotype should be one of a small number of finite values (including the empty
string) (tentative)

Discussion: Note that in 30 out of 90 cases, ecotype has the same value
as name! This may be an error! For the cases where ecotype does not
equal name, there are only 5 distinct values: ‘Lowland’, ‘Upland’, ‘Boreal
Forest’, the string ‘NULL’, and the empty string. This suggests that
possibly ecotype values can be restricted to a small finite set.

notes not NULL

3.5 dbfiles

file name not null, no whitespace (tentative)

6

Discussion: Possibly be more restrictive: For example, currently all values
match ‘^[\w.-]*$’.

file path no whitespace, non-empty, and non-null (tentative)

Discussion: Possibly be more restrictive: For example, currently all values
match ‘^[\w.:/-]*$’.

container type should be in the set (’Model’, ’Posterior’, ’Input’)

container id This looks like a foreign key, but it isn’t exactly, so we include it
here. It refers to the id column of one of the tables models, posteriors,
or inputs; which one depends on the value of container_type. We should
check that the refered-to row exists.

Discussion: The probably requires triggers on this table and each of the
referred-to tables to implement. This may be too complicated to be worth-
while.

md5 should match ‘^([\da-z]{32})?$’

Discussion: In other words, it’s either empty or a 32-digit hexadecimal
number represented as text using lowercase letters. All current values
comply. The datatype for this column is varchar(255) but could be var-
char(32).

3.6 ensembles

notes not NULL

runtype not NULL (tentative)

Discussion: Perhaps there is a regular expression it should match also.

3.7 entities

name should be white-space normalized

notes not NULL

3.8 formats

dataformat — to be determined

notes not NULL

name not NULL, whitespace-normalized

header — to be determined

skip — to be determined

7

3.9 formats variables

name — to be determined

unit — to be determined

storage type — to be determined

column number — to be determined

3.10 inputs

notes not NULL

start date (timestamp) — to be determined

end date (timestamp) — to be determined

name not NULL, whitespace-normalized (tentative)

access level not NULL, in range 1–4 (tentative)

raw not NULL (tentative)

3.11 likelihoods

loglikelihoods — to be determined

n eff — to be determined

weight — to be determined

residual — to be determined

3.12 machines

hostname no whitespace (tentative)

3.13 managements

citation id — to be determined

Discussion: There should be some kind of consistency constraint above
and beyond the foreign key constraint. Perhaps: The management should
be associated with (at least) one of the treatments associated with the
citation specified by citation id.

date not NULL (tentative)

Discussion: As a kind of consistency check, we could require certain values
for the year, month, or day portions of the date for certain values of
dateloc. For example, if dateloc = 8 (“year”), we could require the date

8

to be of the form ‘YYYY-01-01’. (PostgreSQL, unlike MySQL, doesn’t
allow values of the form ‘YYYY-00-00’.) NULLs can be eliminated by
setting dateloc to 9 (“no data”), which would effectively mean “ignore the
value stored in the date column”. Nevertheless, as a consistency check,
we could choose some value (e.g. ‘1000-01-01’) that should always be used
when dateloc = 9.

dateloc use a “dateloc” domain to constrain to specific values; not NULL
(tentative)

Discussion: If this is required to be non-null, we must decide how to handle
the few values where dateloc is NULL and date is not null.

mgmttype not NULL; must be one of a defined set of values specified in the
Rails model file for the Management class

Discussion: Consider storing these in the variables table, or in a separate
lookup table. If we used this table to record units and range restrictions,
this would provide additional useful consistency checks between mgmt-
type, level, and units.

level should be non-negative or the special value -999 (tentative)

Discussion: This should always be non-negative (except in the case that Please com-
ment.we want to use the special value -999 for mgmttypes where a level has no

meaning; if so, we should also constrain level to be non-NULL).

units should be non-null if level is not null; should be constrained to a pre-
scribed set of values (tentative)

Discussion: Ideally, the value should be constrained to a known set of
values on a per mgmttype basis; currently there are several varying desig- to do: research

what standard
set of values to
use

nations for the same unit in a number of cases; for example, kg ha-1 vs.
kg ha^-1. See discussion under mgmttype.

notes not NULL

3.14 methods

name not NULL, whitespace-normalized

description not NULL

3.15 mimetypes

type string not NULL; use a regular expression check

Discussion: A fairly tight check against a regular expression is mentioned
in GH #194.

9

3.16 models

model name not NULL, no whitespace (tentative)

revision not NULL, no whitespace (tentative)

3.17 modeltypes

name not NULL, no whitespace (tentative)

3.18 modeltypes formats

tag not NULL, no whitespace

Discussion: All existing tags are strings of lowercase letters. Should this
be required? Should tags be unique?

required not NULL

input not NULL

3.19 pfts

definition not NULL

name not NULL, should match ’^[-\w]+(\.[-\w]+)*$’ (tentative)

Discussion: Existing entries seem to follow a naming pattern so that they
all match the given regular expression. We could relax this to “no white-
space” or “whitespace-normalized.”

pft type — to be determined

Discussion: Currently this is always ‘plant’.

3.20 priors

phylogeny not NULL, whitespace-normalized

distn not NULL; should be one of ‘unif’, ‘gamma’, ‘beta’, ‘exp’, ‘lnorm’, ‘weibull’,
and ‘norm’

parama, paramb, paramc Some sanity check based on the value of distn
should be possible. (For example, should some distributions allow only
positive numbers?)

n — to be determined

Discussion: This should probably always be >= 2 unless we want to allow
certain values (1, 0, or negative numbers) as special values—say to indicate
an unknown value for n. (1 is not a good choice here, however, since it
would easily be misinterpreted as a legitimate sample size.) Note that
several existing values are 0! Also, several are NULL.

10

notes not NULL

3.21 projects

name not NULL, whitespace-normalized

outdir — to be determined

Discussion: At least non-null.

description not NULL

3.22 runs

start time (timestamp) — to be determined

finish time (timestamp) — to be determined

outdir — to be determined

outprefix — to be determined

setting — to be determined

parameter list — to be determined

started at (timestamp) — to be determined

finsihed at (timestamp) — to be determined

3.23 sites:

city, state, country — to be determined

Discussion: Standardize geographic names (city, country, state) using
TIGER / OpenStreetMap. Note that state is currently used not only
for U.S. states, but states, regions, or provinces in other countries. This
may be harder to standardize. (Question: Does TIGER only deal with
U.S. geographic names?)

Use geocoding / reverse geocoding to enfoce consistency between lat, lon
and city, state, country

Country names should be standardized, and probably this standardization
should be enforced with a constraint.

som should be in range 0–100 (this is a percentage)

mat should be in range -25–40

Discussion: This should be more than adequate: The highest annual mean
temperature recorded is 34.4 degrees Celsius and the lowest is -19.4 degrees
Celsius.

11

masl — replaced by geometry

Discussion: Although this has been replaced, an altitude restriction could
be placed on geometry.

map should be in range 0–12000

Discussion: According to Weather Underground, the wettest place in the
world has an average annual precipitation of 11871mm.

soil — to be determined

Discussion: Should at least be whitespace-normalized and non-null, but
constraining to some finite list of values may be possible (anomalous in-
formation could go into the soilnotes column).

Right now, there are 31 distinct descriptors, but many of these are the
same if variations in capitalization and whitespace are ignored.

soilnotes not NULL

sitename not NULL, whitespace-normalized

greenhouse (boolean) — to be determined

Discussion: Ideally, a not-NULL constraint should be enforced. But there
are 272 rows where this is NULL.

local time (int4) — to be determined

Discussion: A comment should clarify the meaning; I assume it should
mean something like “the number of hours local standard time is ahead
of GMT”: this column should probably be called timezone or better,
utc_offset. Moreover, integer is a poor choice of datatype since certain
locales—Iran and Newfoundland for example—have time zones on the half
hour, and some locales even use quarter-hours offsets.

This column can be confined to a finite set of values: see the list of all UTC
offsets at http://en.wikipedia.org/wiki/Time zone#List of UTC offsets.

Some kind of check certainly possible to ensure consistency with the lon-
gitude extracted from the geometry. The offset is approximately equal to
the longitude divided by 15, but in areas like China and Greenland where
one timezone spans a wide longitude range, the difference can be as much
as 3 or 4 hours.

sand pct, clay pct should be in range 0–100, and sand_pct + clay_pct

should be ≤ 100; more succinctly, each should be non-negative and their
sum should be at most 100.

geometry — to be determined

12

Discussion: This replaces lat, lon, and masl. It is not clear to me what
constraints (if any) can or should be placed on geometry.

3.24 species:

genus capitalized, not NULL, no whitespace

species not NULL, whitespace-normalized

scientificname not NULL, whitespace-normalized; also ensure scientificname
matches FORMAT(’^%s %s’, genus, species) (tentative)

Discussion: There are 205 cases where the above match fails. For most
of these, either the genus name or the species name is not contained in
the value of scientificname. It’s not clear if these are due to data entry
errors or the use of synonyms. Some are cases where the genus is abbre-
viated in the scientificname column. Often, the variety or subspecies
name appears instead of the species name in the species column.

A more comprehensive match restriction might be possible—something
like

CHECK(scientificname ~

FORMAT(’^%s %s((ssp\.|var\.?|\u00d7) \w+)?$’, genus, species))

though this doesn’t account for authority designations, e.g. “Hyacinthoides
italica (L.) Rothm.” In particular, it would be desirable to standardize
the hybrid designator to the “times” symbol with a space on either side
and no longer use the letter “x”.

commonname not NULL, whitespace-normalized

notes not NULL

The remaining columns come from the USDA plant database, and we won’t
be overly concerned with them. Nevertheless, here are some notes:

• Except for species, most taxinomic divisions (“Family”, “Class”, “Divi-
sion”, “Kingdom”, etc.) should probably be constrained to a single cap-
italized word (no spaces) or the empty string (if the information is not
given).

• Symbols: These should contain no whitespace and should consist of digits
and upper-case latin letters. Note that “Symbol” and “AcceptedSymbol”
are almost always identical.

• Duration: This is always ‘Annual’, ‘Biennial’, or ‘Perennial’, or some com-
bination of these. The combinations should be standardized. For example,
both ‘Annual, Perennial’ and ‘Perennial, Annual’ occur. The empty string

13

(or some other special value) should be allowed for unspecified informa-
tion.

• GrowthHabit: Of the 40-some thousand non-NULL, non-empty values
given in this column there are only 66 distinct ones. This number could be
reduced by standardizing: Most values are comma-separated combinations
of ‘Tree’, ‘Shrub’, ‘Vine’, etc. but the order varies.

• Many columns are essentially booleans but use the varchar(255) with val-
ues ‘Yes’, ‘No’, or NULL instead. These should be converted to bona fide
boolean types or to a subdomain of varchar with values ’Yes’, ’No’, and
some special values to indicate unknown, non-yet-entered, or inapplicable
information.

• Many columns use only the values ‘High’, ‘Medium’, ‘Low’, and ‘None’,
(and perhaps also NULL and the empty string). A domain should be
created for this column type.

• pH Minimum, pH Maximum: These obviously should be confined to the
range 0–14, with pH Minimun < pH Maximum. Over 40,000 rows have
0.00 in both these columns, which is nonsensical! A single column range
could be used in place of these two column.

• Several columns refer to seasons of the year. A domain should be created.

• Several quantitative columns should be constrained to be non-negative.

• MinFrostFreeDays: Obviously should be non-negative and at most 365
(366). Similarly for other “Days” columns.

• A few other columns have values that are confined to a small finite set of
string values.

3.25 trait covariate associations

required not NULL

3.26 traits

date, dateloc, time, timeloc, date year, date month, date day, time hour, time minute
— to be determined: but at least constrain dateloc and timeloc to be in
the set of recognized values; define a domain for this (see discussion of
managements.dateloc)
Discussion: Check date and time fields consistency: For example, if date-
loc is 91—97, date and date year should both be NULL (but maybe old
data doesn’t adhere to this?). If date year, date month, or date day is
NULL, date should be NULL as well. Also, dateloc and timeloc should be
constrained to certain meaningful values. (See comment above on man-
agements.dateloc.)

14

mean check mean is in the range corresponding to the variable referenced by
variable_id X

n, stat, statname See comments above on covariates.

specie id and cultivar id these need to be consistent with one another

notes not NULL

checked not NULL, equal to 1, 0, or -1

access level not NULL; range is 1–4

3.27 treatments:

name not NULL, whitespace-normalized
Discussion: Ideally, two names that are identical except for capitalization
should in fact be identical but this would be hard to enforce.

definition not NULL, whitespace-normalized

control not NULL (tentative)
Discussion: The value is constrained in another way be the requirement
stated in the Uniqueness portion of the constraints spreadsheet: “there
must be a control for each (citation id, site id) tuple”. “A control” means
a treatment for which control = true. The meaning of this is not clear,
however, since site_id and citation_id are not columns of this table.

3.28 users:

login — to be determined: at least not NULL

Description: Enforce any constraints required by the Rails interface.

name not NULL, whitespace-normalized

email not NULL; constrain to (potentially) valid email addresses

city not NULL, whitespace-normalized

country not NULL, whitespace-normalized

area to be determined—at least not NULL

This currently isn’t very meaningful. We have a mixture of values like
“tundra” with values like “Agriculture” and “Industry”.

crypted password not NULL

salt not NULL

remember token to be determined

remember token expires at (timestamp) to be determined

access level not NULL; range is 1–4.

page access level not NULL; range is 1–4.

15

state prov to be determined—at least not NULL

Discussion: For U.S. users, this could be constrained to valid state or
territory names.

postal code to be determined–at least not NULL

Discussion: Ideally, this should be constrained according to the country.
Since most users are (currently) from the U.S., we could at least constraint
U.S. postal codes to “NNNNN” or “NNNNN-NNNN”.

3.29 variables

description not NULL, whitespace-normalized

units to be determined

Discussion: These should be standardized. See also discussion of managments.units.

notes not NULL

name not NULL, whitespace-normalized

min, max require min < max if both are non-null

Discussion: Note that these are both of type varchar. Ideally, a single
column of type numrange could be used. If we stay with type varchar
for these columns, there is no reason to allow them to be null. But in
this case we should also require that the strings look like a number (e.g.
~ ’^-?\d+(\.\d*)?$’) possibly allowing in addition certain prescribed
values such as infinity, -infinity, N/A, unspecified, etc.

standard name, standard units, label, type — to be determined

Discussion: None of these columns is currently used: every row has either
NULL or the empty string in each of these columns. Do we really want to
keep them?

3.30 workflows

folder — to be determined: at least not NULL and no whitespace

started at (timestamp) — to be determined

finished at (timestamp) — to be determined

hostname — to be determined: at least not NULL and no whitespace

params — to be determined: at least not NULL and whitespace-normalized

advanced edit (bool) not NULL

start date (timestamp) — to be determined

end date — to be determined

16

3.31 yields:

date, dateloc, date year, date month, date day — to be determined
Discussion: Check date fields consistency: For example, if dateloc is 91—
97, date and date year should both be NULL (but maybe old data doesn’t
adhere to this?). If date year, date month, or date day is NULL, date
should be NULL as well. Also, dateloc should be constrained to certain
meaningful values. (See comment above on managements.dateloc.)

mean not NULL, at least 0 and at most 1000 (tentative)
Discussion: The current maximum occurring in this column is 777.0.

n, stat, statname See comments above on covariates.

specie id and cultivar id these need to be consistent with one another

notes not NULL

checked not NULL, equal to 1, 0, or -1

access level not NULL; range is 1–4

4 Foreign Key Constraints

All foreign key constraints follow the form table id references tables, fol-
lowing Ruby style conventions.

A Github Gist contains a list of foreign key constraints to be placed on BE-
TYdb. The foreign keys are named using the form fk foreigntable lookuptable 1

where the foreigntable has the foreign key. Often, however, we will use more
meaningful names instead of these auto-generated ones.

5 Not-Null Constraints

5.1 Reasons to Avoid Nulls

1. The interpretation of a NULL is almost never defined for the database
user. A NULL may be used for any of the following reasons, and generally
unclear what the reason was in any particular case:

(a) The data entry operator has to look up the information and hasn’t
yet done so. (And maybe they will forget to ever do so!)

(b) The attribute is not applicable for the row in which the null appears.
For example, city might be null for a site in the middle of the desert
not near any city. Or cultivar_id may not apply for a trait mea-
surement carried out on a non-domesticated species.

(c) The information is pending. For example, citation.doi might be
null until a DOI has been assigned.

(d) The information was never collected and is irretrievably missing. For
example, perhaps a long-ago trait measurement was carried out and

17

https://gist.github.com/dlebauer/12d8d9ed1b2965301d64

recorded on a farm crop, but the citation author failed to specify the
cultivar of the species measured.

(e) The information is missing, is retrievable, but it is not considered
worth the effort to retrieve and add it. For example, a site with
NULL in the city column may be in or near a city, but we may not
consider it important to fill in this information.

2. The logic for using nulls defies common sense and is therefore exceptionally
prone to yielding erroneous results. Here are some examples:

(a) Supposed we have a table stats with integer columns a and b. Then,
normally, we should expect the queries

SELECT sum(a) + sum(b) FROM stats;

and

SELECT sum(a + b) FROM stats;

to produce the same result, but they probably won’t if either column
is allowed to contain a NULL.

(b) It is commonly said the NULL stands for a value, but for a value
we don’t happen to know. But consider a column a of some numeric
type. Then even in cases where we don’t know the value of a, we do
know that a - a = 0. But most SQL products don’t. For example,
compare these query results:

bety=# select count(*) from traits;

count

13064

(1 row)

bety=# select count(*) from traits where mean - mean = 0;

count

13058

(1 row)

The six missing rows in the second query result were rows in which
mean was NULL. In such a case PostgreSQL considers mean - mean

to be NULL, not zero, and in the context of a WHERE clause (but
not in other contexts!) NULL is considered to be false.

(c) Nulls are grouped together by the GROUP BY clause but don’t compare
equal if we use the = operator. (NULL = NULL is evaluated to NULL,
not true.) Consider for example the difference between the results
of the following two queries:

SELECT

COUNT (*),

18

sitename

FROM

sites

GROUP BY

sitename

HAVING

COUNT (*) > 1

ORDER BY

sitename;

SELECT

COUNT (*),

sitename

FROM

sites s1

WHERE

EXISTS (

SELECT

1

FROM

sites s2

WHERE

s1. ID != s2. ID

AND s1.sitename = s2.sitename

)

GROUP BY

sitename

ORDER BY

sitename;

The first query groups togther the rows with NULL in the sitename
column. The second query ignores these rows completely and thus
has one fewer group in the result. To get back the missing row, we
have to replace AND s1.sitename = s2.sitename with

AND (s1.sitename = s2.sitename

OR

s1.sitename IS NULL

AND

S2.sitename IS NULL)

These are just a few of the common sense-defying properties that SQL’s
3-valued logic uses to deal with NULLs.

In summary, if the inherent ambiguity of NULLs makes it nearly impossible
to come up with a well-defined predicate that defines the relation associated
with a table and tells us exactly what fact the presense of a given row in the

19

table is supposed to represent. But even should we do so, the slipperiness of the
logic SQL uses to manipulate NULLs makes it highly likely that the query we
write to get results from that data won’t mean what we intend it to.

5.2 Summary of Not-NULL constraints

Some nulls are worse than others perhaps. We probably don’t care much that
over half the rows in the treatments table have NULL in the user_id column
since it is unlikely we will write any queries using this column.

Given the overwhelming task of eliminating the use of nulls from a database
that has allowed them for so long, we have to make some priorities. The following
is a list of columns from which we wish to eliminate (and prevent future) nulls
in the near term.

This is a list of fields that should not be allowed to be null. In all cases,
columns making up part of a candidate key (shown below in parenthesized
groups) should not be null. For many-to-many relationship tables, the foreign
keys should be non-null. In general, nulls can be eschewed from all textual
columns since the empty string can easily be used instead.

• citations: (author, year, title), journal, pg

• citations sites: (citation id, site id)

• citations treatments: (citation id, treatment id)

• covariates: (trait id, variable id)

• cultivars: (specie id, name), ecotype, notes

• dbfiles: (file name, file path, machine id), container type, container id

• ensembles: workflow id

• entities: name, notes (missing values should be the empty string)

• formats: (dataformat)

• formats variables: (format id, variable id)

• inputs: name, access level, (site id, start date, end date, format id)

• inputs runs: (input id, run id)

• inputs variables: (input id, variable id)

• likelihoods: (run id, variable id, input id)

• machines: (hostname)

• managements: (date, management type)

• managements treatments: (treatment id, management id)

• methods: (name, citation id), description

• mimetypes: (type string)

• models: (model name, revision)2, model path, model type

• pfts: definition, (name, modeltype id)

• pfts priors: (pft id, prior id)

• posteriors: (pft id, format id)

2Using this as a key is still at the proposal stage.

20

• priors: (phylogeny, variable id, notes), (phylogeny, variable id, citation id),
distn, parama, paramb [we’ve repeated column names that are part of two
keys]; n: If we require n to be non-NULL, we have to decide how to handle
missing information.

• runs: (model id, site id, start time, finish time, parameter list, ensem-
ble id), outdir, outprefix, setting, started at (note: finished at will not be
available when record is created)

• sites: (geometry, sitename), greenhouse

• species: genus, species, (scientificname)

• traits: (site id, specie id, citation id, cultivar id, treatment id, date, time,
variable id, entity id, method id, date year, date month, date day, time hour,
time minute), mean, checked, access level3

• treatments: name, control, definition (name should probably also be con-
strained to be non-empty; but definition may be empty.)

• users: (login), name, email, crypted password, salt, access level, page access level,
(apikey)4

• variables: (name), units

• workflows: folder, started at, (site id, model id, params, advanced edit,
start date, end date), hostname

• yields: (citation id, site id, specie id, treatment id, cultivar id, method id,
entity id, date year, date month, date day), checked, access level, mean5

6 Uniqueness constraints

These are “natural keys”, that is, combinations of columns that provide a nat-
ural way to identify, select, and distinguish members of the set of entities the
table is meant to represent. More generally, each is a candidate key, that is,
a combination of non-NULL columns guaranteed to be unique within a table.6

Ideally, each table would have a natural key, but a table may have more than
one candidate key. Each table should always have at least one candidate key,
and ideally this will be something other than the auto-numbered id column
that Rails expects each table to have by default.

For many-to-many relationship tables, the foreign key pairs should be unique;
these should be implemented but are not listed here for brevity except where
the table contains columns other than the foreign key and timestamp columns.

• citations: author, year, title

• covariates: trait id, variable id

3The key is still at the proposal stage. Moreover, many values in some of these columns
are currently NULL.

4It is yet to be decided with certainty which columns should be keys.
5The key here is yet to be finalized.
6Note that SQL’s UNIQUE constraint does not prevent duplicate rows if even one column

of the constraint is allowed to be NULL. It only guarantees a row is unique in the case where
all of its columns that are involved in the uniqueness constraint are non-NULL.

21

• cultivars: specie id, name

• dbfiles: file name, file path, machine id

• formats: site id, start date, end date, format id

• formats variables: format id, variable id

• likelihoods: run id, variable id, input id

• machines: hostname

• managements: date, management type

• methods: name, citation id

• models: model name, revision (tentative)

• pfts: name, modeltype id

• posteriors: pft id, format id

• priors: phylogeny, variable id, distn, parama, paramb, citation id

• priors: phylogeny, variable id, notes

• runs: (?) model id, site id, start time, finish time, parameter list, ensem-
ble id

• sites: geometry, sitename

• species: scientificname (not genus, species because there may be multiple
varieties)

• traits: site id, specie id, citation id, cultivar id, treatment id, date, time,
variable id, entity id, method id, date year, date month, date day, time hour,
time minute

• treatments:

– For a given citation, name should be unique. (Note that there is no
citation id column in the treatments table. The association of treat-
ments with citations is a many-to-many one via the citations treatments
table. So the constraint, in words, is something like this: ”Given
two rows of the treatments table with distinct values for ”name”,
no citation should be associated with both rows.” Is this really the
restriction we want?)

– For a given citation and site, there should be only one control. It is not at
all clear how
treatment is
associated
with a site!

• users: (each of the following fields should be independently unique from
other records)

– login

– email [disputed]

– crypted password [disputed]

– salt [disputed]

– apikey

• variables: name

• workflows: site id, model id, params, advanced edit, start date, end date

• yields: site id, specie id, citation id, cultivar id, treatment id, date, en-
tity id, method id, date year, date month, date day

22

	Introduction
	Categories of Constraints
	Reference Documentation

	Value Constraints
	General constraints applying to multiple tables
	citations
	covariates
	cultivars
	dbfiles
	ensembles
	entities
	formats
	formats_variables
	inputs
	likelihoods
	machines
	managements
	methods
	mimetypes
	models
	modeltypes
	modeltypes_formats
	pfts
	priors
	projects
	runs
	sites:
	species:
	trait_covariate_associations
	traits
	treatments:
	users:
	variables
	workflows
	yields:

	Foreign Key Constraints
	Not-Null Constraints
	Reasons to Avoid Nulls
	Summary of Not-NULL constraints

	Uniqueness constraints

