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Abstract

The objective of the set exercise was to determine the result of
using Laplace’s equation to approximate the nature of fluid flow

through a complex chamber. This application would be simulated
and visualised through the production of a streamlined plot for a

2-D system, through a relaxation method.



Contents

Contents 1

List of Figures 2
0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 3
0.2 Methodology . . . . . . . . . . . . . . . . . . . . . . 4

0.2.1 User Option . . . . . . . . . . . . . . . . . . . 4
0.2.2 Defining Required Values and Matrices . . . . 4
0.2.3 Boundary Conditions . . . . . . . . . . . . . . 5
0.2.4 Iteration . . . . . . . . . . . . . . . . . . . . . 6
0.2.5 Plotting . . . . . . . . . . . . . . . . . . . . . 6
0.2.6 Error Conditions . . . . . . . . . . . . . . . . 7
0.2.7 GUI . . . . . . . . . . . . . . . . . . . . . . . 7

0.3 Results and Discussion . . . . . . . . . . . . . . . . . 8
0.3.1 Contour Streamline Plot . . . . . . . . . . . . 8
0.3.2 Mesh Grid . . . . . . . . . . . . . . . . . . . . 9
0.3.3 Iteration vs Error . . . . . . . . . . . . . . . . 9
0.3.4 Quiver Plot . . . . . . . . . . . . . . . . . . . 10
0.3.5 GUI . . . . . . . . . . . . . . . . . . . . . . . 11

0.4 Coding Problems and Potential Modifications . . . . 12
0.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 12

1



List of Figures

1 Default Settings for Code . . . . . . . . . . . . . . . 4
2 Example psiy Transpose if dy = 0.5 . . . . . . . . . . 5
3 Circle Loop . . . . . . . . . . . . . . . . . . . . . . . 6
4 Contour Plot of Streamlines in Chamber . . . . . . . 8
5 Meshgrid of psi(streamfunction values) in the Chamber 9
6 Log of Iteration Count against Error Size . . . . . . 9
7 Log of Iteration Count against Error Size . . . . . . 10
8 Log of Iteration Count against Error Size . . . . . . 11

2



0.1 Introduction

Laplaces Equation, ∇2u = 0[1], is a second-order partial differen-
tial equation capable of being adapted to provide an accurate ap-
proximation of various properties within different systems. This re-
port will address the method and outcome of applying a relaxation
method to the simulation of a flow of a fluid through a chamber
whilst obstructed by several cylinders across its path. The simula-
tion produced was modeled in MathWorks Matlab r, and produces
a visible representation of the streamlines in the system. The extent
of the efficiency to which this method works will also be considered,
through the analysation of a convergence plot, where the size of the
error is seen.

The aim of the simulation is to obtain, through iteration, a reason-
able approximation of the shape and velocity of the flow around the
cylinders. The dimensions of the chamber will be of specified height
and length by the user, or of a preset value, stated in the beginning
of the code. However, due to the simplistic nature of the problem,
the depth of the chamber remains unspecified, and the problem is
analysed in 2 dimensions. In the essence of the simplicity of this
problem, any drag between the fluid and the surface of the cylinder
and boundaries are excluded from any calculation. The flow in this
problem is considered to be entirely ideal and laminar.

Whilst preset values are included in this code, it was also important
that the user could apply their own variables.
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0.2 Methodology

0.2.1 User Option

The code begins with the option to use default variables, which are
later defined, or to set as custom. This put in place by giving the
user the option, upon running the code, of ”Use Preset Variables?
yes/no” appearing in the command window. An input of yes, into
the command window, will run a code with defined variables for
initial velocity of flow, resolution in the x and y directions, chan-
nel dimensions and the position and size of the cylinders. A no
response, will bring up the instructions to input the desired values
in the command window. This is achieved with an if statement,
to determine which part of the code should be executed following
the corresponding yes/no response. An elseif component to this,
allows the code to be restarted if question is answered incorrectly,
the user will be responded to with an ”error please retry message”.
In this code the user has the option to set the circles one-by-one,
rather than defining all of the respective characteristics in separate
arrays (i.e. an array for the x values of circle centres, y values of
circle centres and radius of each circle), as shown below, in order to
allow each circle to be defined as separate entities, providing a more
intuitive input sequence for the user.

U=1;
X=4;
Y=2;

dx=0.0125;
dy=0.0125;

C1=[0.5,0.7,0.2];
C2=[1,1.4,0.3];
C3=[1.5,0.5,0.3];
C4=[1.9,1.1,0.2];
C5=[2.5,0.4,0.2];
C6=[2.3,1.6,0.2];

Figure 1: Default Settings for Code

0.2.2 Defining Required Values and Matrices

Following this loop, the circles values are put into corresponding ar-
rays, depending on their characteristic, in order to improve the ease
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of access from later parts of the code. The resolutions, determined
at the start of code are used to make arrays of values, progressing at
increments equal to this resolution, up to the relative length/width
of the system. The vector size of this is then calculated and used to
create a zeros matrix of the correct size in which to begin inputting
steam function values. Before any physics is used, the arrays cre-
ated, are used to create a mesh grid, which will allow the access of
selection of each element within the created matrix.

0.2.3 Boundary Conditions

The first instance of the use of stream flow follows this, with the
input of the stream function: psiy = (U ∗ Y ).′. In coding, this
uses the earlier created y vector with increments of dy, which is
then transposed to give a column vector, which can be used for the
creation of boundary conditions.

psiy =


0
0.5
1
1.5
2


Figure 2: Example psiy Transpose if dy = 0.5

The while loop is preceded by the defining of the starting iteration
as zero, and the decided tolerance and error. The tolerance and
error determine at what point of convergence is the solution at a
point that can be considered as correct. The boundary conditions
are created, in this case, inside the while loop, in order to keep
them constant throughout iterations. Both walls and the cylinders
cannot be penetrated and hence can be considered to have constant
psi values within their bodies and upon their surfaces. These are
however independent of each other. The bottom wall, with a y = 0
value, can be set at a zero value. The top, at a maximum value,
defined by the result of U∗Y at maximum Y value. In the instance of
this problem, the preset values of Y = 2 and U = 1, resulting in the
maximum stream function value of 2. The cylinders are done slightly
differently, in order to increase the speed of the code. Rather than
approaching each circle individually, for loop is used to determine
the mean value of psi values within each circles. This is achieved by

5



iterating the sequence in figure 3 for each circle, and taking values
from the arrays defined earlier. The left and right of the chamber
are defined as the same, and to be of increasing at steady intervals.
These are created by selecting the desired column of the psi matrix,
and inputting the transposed psiy vector. These stated conditions
provide a psi matrix of unchanging values for these parts of the
simulation.

if
i = 1 : NC; cyl = find(sqrt((xarray −Xcirc(1, i)).2 + (yarray −

Y circ(1, i)).2) <= Rcirc(1, i)); psi(cyl) = mean(psi(cyl));
end

Figure 3: Circle Loop

0.2.4 Iteration

In order to fill the rest of the matrix, and create streamlines, the psi
must be plotted throughout and changed accordingly to the effect
of the cylinders and boundaries. This is called a relaxation method.
Initially, this was achieved using a for loop, but in the interest
of increasing the speed an efficiency of the code, this section was
vectorised[2], for the values from each incremented value in dx and
dy. This section again used Laplace’s equation in the form.
The following few lines of code reset the psi values to those calculated
by Laplace’s equations, and through iteration, will become more
accurate and close to a correct solution. In order to see this converge
and eventually bring the loop to an end, the error value must be
updated during each loop. To conclude the loop, the iteration and
iteration count must be updated by adding one to each and a vector
created for, in order to create a convergence plot with the updated
error, which is also vectorised. The loop will only end when the
error reaches a value lower than a preset tolerance, in this case 0.01.

0.2.5 Plotting

After the loop, all that remains is the plotting stage. Four plots
were chosen to help the user visualise the various characteristics of
the code as well as the fluid flow. First the figure is created; a
full screen display with 4 subplots. The contour of psi values is
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plotted to show streamlines, with 50 streamlines, as appropriate to
the size of the sub-plot. The axis were made of equal size, to show
a proportional simulation, and visible circles were plotted clearly,
to show the location of the cylinders and help emphasize the fluid
flowing around them. The steamlines were made black, as opposed
to a range of colours, to present the results more clearly.
The second sub-plot is a meshgrid, presenting the psi values at each
point on the 2D grid. This is shown in a colour variation to im-
prove the clarity of the results and make it easier to visualise the
circles. It also helps highlight the method of Laplaces equation, in
the averaging of points across each cylinders cross section.
The third is the convergence plot, comparing the number of itera-
tions to the size of error produced. Initially, a plot with scalar axis
was produced. The nature of the rapid convergence made this hard
to interpreted, hence providing requirement for a log scale on the X
axis.
A quiver is produced to emphasise the results of the streamline
plot, showing the direction and size of the flows velocity. Due to
the nature of the resolution of the simulation, the arrows are small,
thus zooming in may be necessary.

0.2.6 Error Conditions

Finally, some error conditions are included, in case of custom values
which would cause a problem in the production of figures. A limit
is put on how high the resolution can be, by restricting how small
the dx and dy values can be (below 0.0125 is prohibited). It was
considered that if the circles were outside the grid, an error message
may be useful, however, it would have little effect on the fluid flow.

0.2.7 GUI

As an extension, the code was input into a custom made GUI. This
allowed for a more user-friendly interface, allowing the user to press
one of 3 buttons to produce the same four graphs. The first, default,
inputs the default settings into the code, the second allows the input
of custom settings whilst the third closes down the GUI.
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0.3 Results and Discussion

0.3.1 Contour Streamline Plot

Figure 4: Contour Plot of Streamlines in Chamber

The above plot shows simulated streamlines around the cylinders
obstructing the flow. Due to the boundary conditions, the input
flow is identical to the output flow, and the flow does not cross any
boundaries. This potentially shows an accurate approximation of
laminar flow in this scenario. This flow is always fully attached to
the cylinder surface and there is no boundary layer separation. As
this occurs independent of speed, the assumption in this case is that
the fluid is infinitely viscous[3], which is of course impossible. Due to
this fact, and the likelihood of some turbulence due to skin friction
drag with the boundaries, this model is unlikely to be effective in
simulating any real life problems with flow at any significant velocity.
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0.3.2 Mesh Grid

Figure 5: Meshgrid of psi(streamfunction values) in the Chamber

The meshgrid pot, whilst less useful than the steamline plot, does
help the user to visualise the effect of Laplace’s equation in the code.
In the results from the run coding, the ability to rotate the grid
enables the visualisation of the averaged-out results of the circles,
and the varying psi values at each point in the system.

0.3.3 Iteration vs Error

Figure 6: Log of Iteration Count against Error Size
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The convergence of an iteration method like this is important in
determining the accuracy of the approximation when the relaxation
method is implemented. The results above show a very steep curve,
even when a log scale is introduced, suggesting a very rapid conver-
gence. However an incredibly large amount of iterations are required
to reduce the error to below the set tolerance level. This shows the
used method to be incredibly effective at gaining rough estimations
of fluid flow, yet it seems to head asymptotically towards a cor-
rect value, hence there must be a point where the user defines the
approximation to be ample in describing the flow.

0.3.4 Quiver Plot

Figure 7: Log of Iteration Count against Error Size

The quiver plot is not dissimilar to the contour plot earlier analysed.
This plot however does define not only the direction of the flow, but
its velocity at each point, by differentiating the position against
iteration number. This would be effective in presenting this, but
due to the high resolution in the coding, the arrows appear very
small and are not easy for the user to interpret. Although if zoomed
in, they do effectively support the results found by the contour plot.
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0.3.5 GUI

Figure 8: Log of Iteration Count against Error Size

The GUI is an effective way of making the interface for the user
more intuitive and as seen above, offers the user an option to use,
or not use the default settings. It also provides an easy option to
close the program. These options are presented as push buttons
which once pushed, run the appropriate code to their action. The
GUI effectively presents the results in an attractive layout, allowing
the user to analyse the effectiveness and accuracy of the relaxation
method on the problem at hand.

11



0.4 Coding Problems and Potential Modifica-
tions

The main issue with the coding, is the time in which it takes to run.
This was addressed by the addition of vectorising certain loops to
prevent, iterations occuring at an unnecessary frequency. In terms
of further improvements, an interpolation method would decrease
the error from an earlier stage, and decrease the need for further it-
eration. Methods such as the Successive over-relaxation method[4].
There are also potentially more built-in functions in matlab which
may help decrease the need for iteration[5]. In terms of improving
the experience for the user, potentially a pop up box, with input
boxes, could be added to eliminate the obscure use of the command
window. This could be initially filled with the preset values, to in-
dicate to the user the suggested dimensions and the correct method
to input values.

0.5 Conclusion

• The GUI is a useful way of presenting all the information to
the user, but would be improved by the addition of an option
pop up box.

• The contour plot provides an effective simulation of how fluid
would flow, if at very low velocity or high viscosity, but would
not provide accurate solutions to real world problems where
flow is not entirely ideal and laminar.

• The accuracy of the plot converges rapidly but is unlikely to
ever reach an exact value.

• The speed of the program is increased as more elements are
vectorised, and would be further increased if interpolation was
introduced.

• The program can be adapted by the user to fit custom values
for speed, dimensionsm, resolution and obstructions, making it
versatile and able to be applied to different problems.

• For the model to be entirely accurate, other aspects, such as
frictional forces and irregularities must be considered.
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