
Compilers Lab 04: Lexical analyzer using lex

A00226860 - Gerardo Juarez

Abstract— Coding a compiler from scratch is really hard if
you use only the theory behind it, however, there are many tools
that makes the development of a compiler easier for a software
developer. One example of those tools is the scanner generator,
as it names implies, it is a tool that generates a lexical analyzer
or a scanner for a language. The code created by this tool
matches strings with regular expressions instead of the naive
approach of if-else statements all over the code.

The generated code and the naive approach were compared
in time consumption to figure out whether the automated code is
not only easier to implement but faster for a complete compiler.

I. INTRODUCTION

The lexical analyzer or scanner, is the first step of a
compiler that generates a stream of tokens from the source
code. In order to do this, the scanner must be able to identify
and match specific sequences of characters to tag them with
different identifiers that will be used for the next phases
of the compiler. This process might be annoying if it is
coded from scratch using many if-else statements in any
programming language and slow since many comparisons
will be executed for each character of the stream received as
input.

There exists tools that helps the software developer in the
construction of the compiler. One of this example is the Lex
program that creates a scanner in C language, it only needs
the set of regular expressions to match the defined tokens.
This saves the time of coding the complete scanner.

II. PROBLEM DESCRIPTION

Compilers must be efficient and fast because large soft-
ware products will consume lot of time in just the compiling.
This is why the optimization of each phase of the compiler
is wanted.

Lex is a tool that makes the life of a compiler developer
easier, but this might be slower than the naive approach,
or not. Whether Lex is used or not, the important thing to
compare is if the matching of strings with regular expressions
is faster than the use of if-else statements.

III. SOLUTION

Two scanners were coded for the experiment, one using
Lex and the other using if-else statements. Both of them
were run five different files with 10 millions of lines. The
scanners detects tokens of the AC Language described in the
book ”Crafting a Compiler”.

In order to measure the time spent for each program, the
command ”time” of Linux was used like this: time -a -v -o
output-file ./compiler random-code.ac, where the ’.ac’ file is
the code for the AC language and the ’compiler’ is the name
of the executable generated when compiling the scanners.

IV. RESULTS

The plot below shows the run time in seconds of the naive
scanner using if-else statements. The x-axis represents one
file, and the y-axis the duration of execution of the program.
The wall clock time, or real time, represents the total amount
of time, including both user time and kernel time spent.

On the other hand, the plot below shows the run time in
seconds of the Lex scanner. It was expected to be faster than
the naive scanner, however, it had worse performance. While
the naive scanner time was around 17.5 to 20.0 seconds, the
Lex scanner was around 25.0 seconds.

V. CONCLUSIONS

The Lex scanner was expected to be faster, but according
to the results, it was not. There are many variables to take
into consideration to be certain. For example, the compiler
may have optimized the naive code to make it faster, but this
would mean that the code generated by Lex was optimized
too, hence, the compiler might not be the problem.

Another reason could be that the ’fprintf’ function inside
the ’compiler.l’, used to write the tokens into a file, made
it slower. This because a scanner should not do this kind of
thing, it should pass the token stream into the parser without
writing into disk or it would run slower. In other words,
the C file generated by Lex may not perform well when



the program needs to perform complex operations, such as
writing to a file, for each string of characters that is converted
into a token.


